【題目】如圖,,是平行四邊形從對(duì)角線上的兩點(diǎn),,連接并延長(zhǎng)交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接,設(shè)的面積為,的面積為,則與的關(guān)系正確的是( )
A.B.C.D.
【答案】C
【解析】
由平行四邊形的性質(zhì)可得AD∥BC,AB∥CD,AB=CD,AD=BC,由平行線分線段成比例可得CD=2HB,BC=2DG,可得S1=S△CDG=S△BCH=SABCD,GH∥DB,通過相似三角形的性質(zhì)可求S2=S△CHG=SABCD,即可求解.
解:∵DE=EF=BF,
∴DF=2BF,BE=2DE.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,AB=CD,AD=BC,
∴,,
∴CD=2HB,BC=2DG,
∴點(diǎn)G,H分別是AD,AB的中點(diǎn),
∴S1=S△CDG=S△BCH=SABCD,GH//DB.
∵GH//DB,
∴△AGH∽△ADB,
∴,
∴S△AGH=S△ABC=SABCD,
∵S△CHG=SABCD-S△AGH-S△CDG-S△BCH,
∴S2=S△CHG=SABCD,
∴S1=S2,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地有一個(gè)直徑為 14 米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心 2 米處達(dá)到最高,高度為5米 ,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示以水平方向?yàn)?/span> x 軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高 1.8 米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估規(guī)劃,政府決定對(duì)噴水設(shè)施改造成標(biāo)志性建筑,做出如下設(shè)計(jì)改進(jìn);在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到 42 米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】清代詩(shī)人高鼎的詩(shī)句“兒童散學(xué)歸來早,忙趁東風(fēng)放紙鳶”描繪出一幅充滿生機(jī)的春天景象.小明制作了一個(gè)風(fēng)箏,如圖 1 所示,AB 是風(fēng)箏的主軸,在主軸 AB上的 D、E 兩處分別固定一根系繩,這兩根系繩在 C 點(diǎn)處打結(jié)并與風(fēng)箏線連接.如圖 2,根據(jù)試飛,將系繩拉直后,當(dāng)∠CDE=75°,∠CED=60°時(shí),放飛效果佳.已知 D、E 兩點(diǎn)之間的距離為 20cm,求兩根系繩 CD、CE 的長(zhǎng). (結(jié)果保留整數(shù),不計(jì)打結(jié)長(zhǎng)度.參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(2,0),直線y = x+1與二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A在y軸上.
(1)二次函數(shù)的解析式為y = ;
(2)證明點(diǎn)(-m,2m-1)不在(1)中所求的二次函數(shù)圖象上;
(3)若C為線段AB的中點(diǎn),過點(diǎn)C做CE⊥x軸于點(diǎn)E,CE與二次函數(shù)的圖象交于D.
①y軸上存在點(diǎn)K,使K、A、D、C為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)K的坐標(biāo)是 .
②二次函數(shù)的圖象上是否存在點(diǎn)P,使得三角形 S△ POE=2S△ABD?若存在,求出P坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),,點(diǎn)在以為圓心,為半徑的⊙上,是的中點(diǎn),若長(zhǎng)的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)10個(gè)班的300名學(xué)生即將參加學(xué)校舉行的研究旅行活動(dòng),學(xué)校提出以下4個(gè)活動(dòng)主題:A.赤水丹霞地貌考察;B.平塘天文知識(shí)考察;C.山關(guān)紅色文化考察;D.海龍電土司文化考察,為了解學(xué)生喜歡的活動(dòng)主題,學(xué)生會(huì)開展了一次調(diào)查研究,請(qǐng)將下面的過程補(bǔ)全
(1)收集數(shù)據(jù):學(xué)生會(huì)計(jì)劃調(diào)查學(xué)生喜歡的活動(dòng)主題情況,下面抽樣調(diào)查的對(duì)象選擇合理的是______.(填序號(hào))
①選擇七年級(jí)3班、4班、5班學(xué)生作為調(diào)查對(duì)象
②選擇學(xué)校旅游攝影社團(tuán)的學(xué)生作為調(diào)查對(duì)象
③選擇各班學(xué)號(hào)為6的倍數(shù)的學(xué)生作為調(diào)查對(duì)象
(2)整理、描述數(shù)據(jù):通過調(diào)査后,學(xué)生會(huì)同學(xué)繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)把統(tǒng)計(jì)圖補(bǔ)充完整
某校七年級(jí)學(xué)生喜歡的活動(dòng)主題條形統(tǒng)計(jì)圖某校七年級(jí)學(xué)生喜歡的活動(dòng)主題扇形統(tǒng)計(jì)圖
(3)分析數(shù)據(jù)、推斷結(jié)論:請(qǐng)你根據(jù)上述調(diào)查結(jié)果向?qū)W校推薦本次活動(dòng)的主題,你的推薦是______(填A-D的字母代號(hào)),估算全年級(jí)大約有多少名學(xué)生喜歡這個(gè)主題活動(dòng)
(4)若在5名學(xué)生會(huì)干部(3男2女)中,隨機(jī)選取2名同學(xué)擔(dān)任活動(dòng)的組長(zhǎng)和副組長(zhǎng),求抽出的兩名同學(xué)恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,切于點(diǎn),點(diǎn)是上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與兩點(diǎn)重合),連接,過點(diǎn)作交于點(diǎn),過點(diǎn)作于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,.
(1)求證:.
(2)若直徑的長(zhǎng)為12.
①當(dāng)________時(shí),四邊形為正方形;
②當(dāng)________時(shí),四邊形為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個(gè)數(shù)有( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植樹4~7棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵.將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.
回答下列問題:
(1)寫出條形圖中存在的錯(cuò)誤,并說明理由;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)和中位數(shù);
(3)求這20名學(xué)生每人植樹量的平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com