如圖,在矩形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點,若tan∠AEH=,四邊形EFGH的周長為60cm,則矩形ABCD的周長為    cm.
【答案】分析:首先利用三角形的中位線定理證明EH=BD,F(xiàn)G=BD,EF=AC,HG=AC,再根據(jù)矩形的性質得到;AC=BD,從而得到四邊形EFGH是菱形,再根據(jù)菱形的性質求出菱形的邊長,進而得到:AE,AH的長度,從而得到答案.
解答:解;∵連接AC,BD,
∵E、F、G、H分別為AB、BC、CD、DA的中點,
∴EH=BD,F(xiàn)G=BD,EF=AC,HG=AC,
∵ABCD是矩形,
∴AC=BD,
∴EF=FG=GH=HE,
∴四邊形EFGH是菱形,
∵四邊形EFGH的周長為60cm,
∴EH=15,
∵tan∠AEH=,
∴AH=12,AE=9,
∴AD=24,AB=18.
∴矩形ABCD的周長為:(24+18)×2=84cm.
故答案為:84.
點評:此題主要考查了三角形中位線定理,矩形的性質,菱形的判定與性質,解題的關鍵是根據(jù)條件證出四邊形EFGH是菱形,得到EH的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是( �。�
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( �。�

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數(shù)關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案