解:(1)∵△ABC是等邊三角形,
∴BC=AC,∠ACB=60°
,
∵OC繞點C按順時針方向旋轉(zhuǎn)60°,
∴△BOC≌△ADC,
∴AD=BO;
(2)△AOD是直角三角形.
理由:∵△BOC≌△ADC,
∴DC=OC.∠BOC=∠ADC=150°
∵∠DCO=60°,
∴△OCD是等邊三角形.
∴∠ODC=60°
∴∠ADC=90°,
∴△AOD是直角三角形.
(3)∵∠AOB=110°,∠BOC=α
∴∠AOC=250°-a.
∵△OCD是等邊三角形,
∴∠DOC=∠ODC=60°,
∴∠ADO=a-60°,∠AOD=190°-a,
當(dāng)∠DAO=∠DOA時,
2(190°-a)+a-60°=180°,
解得:a=140°
當(dāng)∠AOD=ADO時,
190°-a=a-60°,
解得:a=125°,
當(dāng)∠OAD=∠ODA時,
190°-a+2(a-60°)=180°,
解得:a=110°
∴α=110°,α=140°,α=125°.
分析:(1)由旋轉(zhuǎn)的性質(zhì)就可以得出△BOC≌△ADC就可以得出AD=BO;
(2)由旋轉(zhuǎn)可以得出 OC=DC,∠DCO=60°,就可以得出△ODC是等邊三角形,就可以得出∠ODC=60°,從而得出∠ADO=90°,而得出△AOD的形狀;
(3)由條件可以表示出∠AOC=250°-a,就有∠AOD=190°-a,∠ADO=a-60°,當(dāng)∠DAO=∠DOA,∠AOD=ADO或∠OAD=∠ODA時分別求出a的值即可.
點評:本題考查了等邊三角形的判定急性子的運用,旋轉(zhuǎn)的性質(zhì)的運用,直角三角形的判定,全等三角形的判定及性質(zhì)的運用,等腰三角形的判定及性質(zhì)的運用,解答時證明三角形全等是關(guān)鍵.