如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=2
2
,BC=6,∠B=45°.直角三角板含45°角的頂精英家教網(wǎng)點(diǎn)E在邊BC上移動(dòng),一直角邊始終經(jīng)過(guò)點(diǎn)A,斜邊與腰CD(或CD的延長(zhǎng)線(xiàn))交于點(diǎn)F.設(shè)BE=x,CF=y.
(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求當(dāng)x為何值時(shí),y取得最大值,并求出該最大值;
(3)若△ABE為等腰三角形,求CF的長(zhǎng).
分析:(1)由題意得∠B=∠C,再求得∠AEB=∠EFC,可得出△ABE∽△EFC,從而得出y與x的函數(shù)關(guān)系式y=
6x-x2
2
2
,又E再BC上運(yùn)動(dòng)可得(0≤x≤6);
(2)根據(jù)(1)的二次函數(shù)的關(guān)系式可求y的最大值;
(3)△ABE為等腰三角形有兩種情況,AB=AE或AE=BE①當(dāng)AB=AE時(shí)BE=4,代入(1)的關(guān)系式可得y=2
2
②當(dāng)AE=BE時(shí)BE=2代入關(guān)系式可得y=2
2
.③當(dāng)AB=BE時(shí)也可求出CF的長(zhǎng).
解答:解:(1)由題意得∠B=∠C,∠AEB=180°-∠AEF-∠FEC=180°-45°=∠EFC.
∴△ABE∽△EFC,可得
AB
EC
=
BE
FC
=
2
2
6-X
=
x
y
,
故可得y=
6x-x2
2
2
(0≤x≤6);

(2)由(1)得y=
-(x-3)2+9
2
2
,
∴當(dāng)x=3時(shí),y取得最大值
9
2
2
=
9
2
4


(3)△ABE為等腰三角形有兩種情況,AB=AE或AE=BE或AB=BE
①當(dāng)AB=AE時(shí)BE=4,代入(1)的關(guān)系式可得y=2
2
,
②當(dāng)AE=BE時(shí)BE=2,代入關(guān)系式可得y=2
2
,y的大小既是CF的長(zhǎng).
③當(dāng)AB=BE=2
2
時(shí),
精英家教網(wǎng)
∵∠B=45°,
∴∠BEA=67.5°,
∴∠FEC=180°-∠BEA-∠AEF=180°-67.5°-45°=67.5°,
∴∠CFE=180°-∠FEC-∠C=180°-67.5°-45°=67.5°,
∴CF=CE=BC-BE=6-2
2
;
故可得:若△ABE為等腰三角形,CF的長(zhǎng)為2
2
或6-2
2
點(diǎn)評(píng):本題屬有難度的題,關(guān)鍵在于觀(guān)察x與y的關(guān)系怎樣建立,得出x與y的關(guān)系后就簡(jiǎn)單了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止).設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個(gè)直角梯形時(shí),求t的值;
(2)試問(wèn)是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中考必備’04全國(guó)中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動(dòng),點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線(xiàn)移動(dòng),且PQ∥DC,若AP=x,梯形位于線(xiàn)段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時(shí),S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(2)當(dāng)線(xiàn)段PQ將梯形AB∥⊥CD分成面積相等的兩部分時(shí),x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線(xiàn)段PQ與梯形AB∥⊥CD的中位線(xiàn)EF交于O點(diǎn),那么OE與OF的長(zhǎng)度有什么關(guān)系?借助備用圖說(shuō)明理由;并進(jìn)一步探究:對(duì)任何一個(gè)梯形,當(dāng)一直線(xiàn)l經(jīng)過(guò)梯形中位線(xiàn)的中點(diǎn)并滿(mǎn)足什么條件時(shí),一定能平分梯形的面積?(只要求說(shuō)出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案