如圖,四邊形ABCD內(nèi)接于半圓O,AB是直徑.
(1)請(qǐng)你添加一個(gè)條件,使圖中的四邊形ABCD成等腰梯形,這個(gè)條件是______(只需填一個(gè)條件);
(2)如果CD=AB,請(qǐng)你設(shè)計(jì)一個(gè)方案,使等腰梯形ABCD分成面積相等的三部分,并給予證明.

【答案】分析:(1)根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ),則只需保證該四邊形是梯形(等腰梯形)即可;
(2)可連接OD、OC,得出DC=AO=BO,△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,根據(jù)三角形的面積公式求出即可.
解答:解:(1)∠A=∠B(或AD=BC,或,
或DC∥AB,或∠D+∠A=180°等);

(2)如圖,連接OD,OC,則
S△AOD=S△CDO=S△BOC=S梯形ABCD;
證明:∵CD∥AB,CD=AB,
∴DC=AO=BO,
∵DC∥AB,
∴△AOD邊AO上的高、△BOC邊OB上的高、△DCO的邊DC上的高相等,
∴S△AOD=S△CDO=S△BOC=S梯形ABCD
點(diǎn)評(píng):本題考查了圓內(nèi)接四邊形的性質(zhì)、等腰梯形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí).注意:圓內(nèi)接梯形一定是等腰梯形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線(xiàn)、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線(xiàn)上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線(xiàn)CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案