如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,若OB=,∠C=120°,則點(diǎn)B′的坐標(biāo)為( )

A.(3,
B.(3,
C.(,
D.(,
【答案】分析:首先根據(jù)菱形的性質(zhì),即可求得∠AOB的度數(shù),又由將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,可求得∠B′OA的度數(shù),然后在Rt△B′OF中,利用三角函數(shù)即可求得OF與B′F的長,則可得點(diǎn)B′的坐標(biāo).
解答:解:過點(diǎn)B作BE⊥OA于E,過點(diǎn)B′作B′F⊥OA于F,
∴∠BE0=∠B′FO=90°,
∵四邊形OABC是菱形,
∴OA∥BC,∠AOB=∠AOC,
∴∠AOC+∠C=180°,
∵∠C=120°,
∴∠AOC=60°,
∴∠AOB=30°,
∵菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,
∴∠BOB′=75°,OB′=OB=2
∴∠B′OF=45°,
在Rt△B′OF中,
OF=OB′•cos45°=2×=,
∴B′F=,
∴點(diǎn)B′的坐標(biāo)為:(,-).
故選D.
點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì),旋轉(zhuǎn)的性質(zhì)以及直角三角形的性質(zhì)與三角函數(shù)的性質(zhì)等知識(shí).此題綜合性較強(qiáng),難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,若OB=2
3
,∠C=120°,則點(diǎn)B′的坐標(biāo)為( 。
A、(3,
3
B、(3,-
3
C、(
6
6
D、(
6
,-
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)如圖,菱形OABC的頂點(diǎn)B在y軸上,頂點(diǎn)C的坐標(biāo)為(-3,2),若反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點(diǎn)A,則反比例函數(shù)的表達(dá)式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,菱形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B、C均在第一象限,OA=2,∠AOC=60°.點(diǎn)D在邊AB上,將四邊形OABC沿直線0D翻折,使點(diǎn)B和點(diǎn)C分別落在這個(gè)坐標(biāo)平面的點(diǎn)B′和C′處,且∠C′DB′=60°.若某反比例函數(shù)的圖象經(jīng)過點(diǎn)B′,則這個(gè)反比例函數(shù)的解析式為
y=-
3
3
x
y=-
3
3
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置.若OB=4
3
,∠C=120°,則點(diǎn)B′的坐標(biāo)為
(-2
6
,2
6
(-2
6
,2
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4),頂點(diǎn)A在x軸的正半軸上.反比例函數(shù)y=
kx
(x>0)的圖象經(jīng)過頂點(diǎn)B,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案