某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗,他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm。(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

解:(1),

∴水池的總?cè)莘e為,

解得:x=2或4,
答:x應(yīng)為2或4;
(2)由(1)知V與x的函數(shù)關(guān)系式為:,
x的取值范圍是:0<x<6;
(3)
∴當(dāng)x=3時(shí),V有最大值40.5,
答:若使水池的總?cè)莘e最大,x應(yīng)為3,最大容積為40.5m3。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面精英家教網(wǎng)墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年浙江慈溪育才中學(xué)九年級(jí)第一學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻(墻長(zhǎng)8米),再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).

(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?

(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;

(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《第26章 二次函數(shù)》2010年復(fù)習(xí)題(解析版) 題型:解答題

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》?碱}集(18):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年1月浙江省杭州市濱江區(qū)九年級(jí)(上)月考數(shù)學(xué)試卷(解析版) 題型:解答題

某農(nóng)戶(hù)計(jì)劃利用現(xiàn)有的一面墻再修四面墻,建造如圖所示的長(zhǎng)方體水池,培育不同品種的魚(yú)苗.他已備足可以修高為1.5m、長(zhǎng)18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長(zhǎng)度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度)
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案