【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OD⊥AB于點(diǎn)O,分別交AC、CF于點(diǎn)E、D,且DE=DC.

(1)求證:CF是⊙O的切線;

(2)若⊙O的半徑為5,BC=,求DE的長.

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)連接OC,欲證明CF是⊙O的切線,只要證明∠OCF=90°.

(2)作DH⊥AC于H,由△AEO∽△ABC,得求出AE,EC,再根據(jù)sin∠A=sin∠EDH,得到,求出DE即可.

試題解析:連接OC,∵OA=OC,∴∠A=∠OCA,∵OD⊥AB,∴∠A+∠AEO=90°,∵DE=DC,∴∠DEC=∠DCE,∵∠AEO=∠DCE,∴∠AEO=∠DCE,∴∠OCE+∠DCE=90°,∠OCF=90°,∴OC⊥CF,∴CF是⊙O切線.

(2)作DH⊥AC于H,則∠EDH=∠A,∵DE=DC,∴EH=HC=EC,∵⊙O的半徑為5,BC=,∴AB=10,AC=,∵△AEO∽△ABC,∴,∴AE=,∴EC=AC﹣AE=,∴EH=EC=,∵∠EDH=∠A,∴sin∠A=sin∠EDH,∴,∴DE===

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知yx 的函數(shù),自變量x的取值范圍是x >0,下表是yx 的幾組對應(yīng)值.

x

···

1

2

3

5

7

9

···

y

···

1.98

3.95

2.63

1.58

1.13

0.88

···

小騰根據(jù)學(xué)習(xí)一次函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小騰的探究過程,請補(bǔ)充完整:

(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(2)根據(jù)畫出的函數(shù)圖象,寫出:

x=4對應(yīng)的函數(shù)值y約為________;

該函數(shù)的一條性質(zhì):__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,1).以點(diǎn)A為直角頂點(diǎn)作∠CAD=90°,射線ACy軸的負(fù)半軸于點(diǎn)C,射線ADx軸的負(fù)半軸于點(diǎn)D

1求直線AB的解析式;

2OD﹣OC的值是否為定值?如果是,求出它的值;如果不是,求出它的變化范圍;

3平面內(nèi)存在點(diǎn)P,使得AB、CP四點(diǎn)能構(gòu)成菱形,

P點(diǎn)坐標(biāo)為 ;

②點(diǎn)Q是射線AC上的動(dòng)點(diǎn),求PQ+DQ的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列每組數(shù)分別是三根木棒的長度,能用它們擺成三角形的是(
A.3cm,4cm,8cm
B.8cm,7cm,15cm
C.5cm,5cm,11cm
D.13cm,12cm,20cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明新家裝修,在裝修客廳時(shí),購進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80/塊,單色地磚的單價(jià)是40/塊.

(1)兩種型號的地磚各采購了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號的地磚共60塊,且采購地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)BO分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A,0),B0,2),則點(diǎn)B2016的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,動(dòng)點(diǎn)M從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時(shí),四邊形ACNM的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是( 。

A. 畫一條3厘米長的射線 B. 畫一條3厘米長的直線

C. 畫一條5厘米長的線段 D. 在線段、射線、直線中直線最長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列幾何圖形不一定是軸對稱圖形的是(
A.線段
B.角
C.等腰三角形
D.直角三角形

查看答案和解析>>

同步練習(xí)冊答案