【題目】在下列條件中:①∠A+∠B=∠C;②∠A﹕∠B﹕∠C=1﹕2﹕3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=∠B=∠C,能確定△ABC為直角三角形的條件有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=mx2+2mx+c(m≠0),與y軸交于點(diǎn)C(0,﹣4),與x軸交于點(diǎn)A(﹣4,0)和點(diǎn)B.
(1)求該拋物線的解析式;
(2)若P是線段OC上的動(dòng)點(diǎn),過點(diǎn)P作PE∥OA,交AC于點(diǎn)E,連接AP,當(dāng)△AEP的面積最大時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)D為該拋物線的頂點(diǎn),⊙Q為△ABD的外接圓,求證⊙Q與直線y=2相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知MN∥PQ,B在MN上,C在PQ上,A在B的左側(cè),D在C的右側(cè),DE平分∠ADC,BE平分∠ABC,直線DE、BE交于點(diǎn)E,∠CBN=100°.
(1)若∠ADQ=130°,求∠BED的度數(shù);
(2)將線段AD沿DC方向平移,使得點(diǎn)D在點(diǎn)C的左側(cè),其他條件不變,若∠ADQ=n°,求∠BED的度數(shù)(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)D且與邊BA交于點(diǎn)E,連接DE.
(1)連接OE,若△EOA的面積為2,則k= ;
(2)連接CA、DE與CA是否平行?請說明理由;
(3)是否存在點(diǎn)D,使得點(diǎn)B關(guān)于DE的對稱點(diǎn)在OC上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是 (填①或②),月租費(fèi)是 元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=5x的圖象沿y軸向下平移3個(gè)單位長度,所得直線的函數(shù)表達(dá)式為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com