如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜邊AB上一動點(不與點A、B重合),PQ⊥AB交△ABC的直角邊于點Q,設(shè)AP為x,△APQ的面積為y,則下列圖象中,能表示y關(guān)于x的函數(shù)關(guān)系的圖象大致是( 。

A.  B.  C.  D.
B.  
C.

試題分析:當(dāng)點Q在AC上時,;
當(dāng)點Q在BC上時,
∵AP=x,AB=5,
∴BP=5﹣x,又cosB=,
∵△ABC∽QBP,
∴PQ=BP= 
,
∴該函數(shù)圖象前半部分是拋物線開口朝上,后半部分也為拋物線開口向下.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線先沿軸向右平移1個單位, 再沿軸向上移2個單位,所得拋物線的解析式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點,

(1)求出這條拋物線;
(2)求它與x軸的交點和拋物線頂點的坐標(biāo);
(3)x取什么值時,拋物線在x軸上方?
(4)x取什么值時,y的值隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:把一個半圓與拋物線的一部分合成封閉圖形,我們把這個封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請你求出過點C的“蛋圓”切線與x軸的交點坐標(biāo);
(3)求經(jīng)過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:關(guān)于的二次函數(shù)y=px2-(3p+2)x+2p+2(p>0)
(1)求證:無論p為何值時,此函數(shù)圖象與x軸總有兩個交點;
(2)設(shè)這兩個交點坐標(biāo)分別為(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S關(guān)于P的函數(shù)解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.

(1)求此二次函數(shù)的解析式;
(2)寫出點C的坐標(biāo)________,頂點D的坐標(biāo)為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標(biāo)__________________________________(不必寫出過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,直徑AB=4,CD=,AB⊥CD于點E,點M為線段EA上一個動點,連接CM、DM,并延長DM與弦AC交于點P,設(shè)線段CM的長為x,△PMC的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )


A.              B.                 C.               D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2.其中正確的結(jié)論是(  )
A.①②B.①③C.①③④D.①②③④

查看答案和解析>>

同步練習(xí)冊答案