【題目】如圖,線(xiàn)段CD垂直平分線(xiàn)段AB,垂足為H,CA的延長(zhǎng)線(xiàn)交BD的延長(zhǎng)線(xiàn)于ECB的延長(zhǎng)線(xiàn)交AD的延長(zhǎng)線(xiàn)于F

1)求證:DEDF;

2)若AEAB,∠E22.5°,則直接寫(xiě)出圖中內(nèi)角含有45°等腰三角形(寫(xiě)出3個(gè)即可).

【答案】1)證明見(jiàn)解析;(2ACH,BCHCAB都是含45°角的等腰三角形,理由見(jiàn)解析.

【解析】

(1)根據(jù)線(xiàn)段垂直平分線(xiàn)得出ACBC,BDAD,推出∠CBE=∠CAF,證△BCE≌△ACF,推出BEAF,即可得出答案;

(2)根據(jù)全等三角形的性質(zhì)和垂直的定義即可得到結(jié)論.

1)證明:∵線(xiàn)段CD垂直平分AB,

ACBC,ADBD

∴∠CAB=∠CBA,∠BAD=∠ABD

∴∠CAB+BAD=∠CBA+ABD,

即∠CBE=∠CAF,

BCEACF

∴△BCE≌△ACFASA),

BEAF

BDAD,

BEBDAFAD,

DEDF;

2)解:ACH,BCHCAB都是含45°角的等腰三角形,

理由:由(1)證得BCE≌△ACF,

CECF

AEBF,

ABAE

ABBF,

∴∠E=∠ABE=∠BAF=∠F22.5°,

∴∠CAB=∠CBA45°,

CDAB,

∴∠AHC=∠BHC90°,

∴∠ACH=∠BCH45°

即:ACH,BCH,CAB都是含45°角的等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,圓柱底面半徑為,高為,點(diǎn)分別是圓柱兩底面圓周上的點(diǎn),且、在同一母線(xiàn)上,用一棉線(xiàn)從順著圓柱側(cè)面繞3圈到,求棉線(xiàn)最短為_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家去李寧體育館游泳,同時(shí),媽媽從李寧體育館以50/分的速度回家,小明到體育館后發(fā)現(xiàn)要下雨,立即返回,追上媽媽后,小明以250/分的速度回家取傘,立即又以250/分的速度折回接?jì)寢專(zhuān)⒁煌丶遥鐖D是兩人離家的距離y(米)與小明出發(fā)的時(shí)間x(分)之間的函數(shù)圖像.(注:小明和媽媽始終在同一條筆直的公路上行走,圖像上A、CD、F四點(diǎn)在一條直線(xiàn)上)

1)求線(xiàn)段oB及線(xiàn)段AF的函數(shù)表達(dá)式;

2)求C點(diǎn)的坐標(biāo)及線(xiàn)段BC的函數(shù)表達(dá)式;

3)當(dāng)x 時(shí),小明與媽媽相距1500米;

4)求點(diǎn)D坐標(biāo),并說(shuō)明點(diǎn)D的實(shí)際意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:人教版八年級(jí)上冊(cè)數(shù)學(xué)教材第121頁(yè)的閱讀與思考內(nèi)容介紹,在因式分解中有一類(lèi)形如x2+p+qx+pq的多項(xiàng)式,其常數(shù)項(xiàng)是兩個(gè)因數(shù)的積,而一次項(xiàng)系數(shù)恰好是這兩個(gè)因數(shù)的和,則我們可以把它分解成x2+p+qx+pq=(x+p)(x+q).

例如,x2+3x+2x2+1+2x+1×2=(x+1)(x+2),具體做法是先分解二次項(xiàng)系數(shù),分別寫(xiě)在十字交叉線(xiàn)的左上角和左下角,再分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線(xiàn)的右上角和右下角:然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如圖),這種方法稱(chēng)為十字相乘法

解決問(wèn)題:

1)請(qǐng)模仿上例,運(yùn)用十字相乘法將多項(xiàng)式x2x6因式分解(畫(huà)出十字相乘圖)

2)若多項(xiàng)式x2+kx12可以分解成(x+m)(x+n)(m,n為整數(shù))的形式,則m+n的最大值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)習(xí)與探究:

在等邊△ABC中,P是射線(xiàn)AB上的一點(diǎn).

1)探索實(shí)踐:

如圖1,P是邊AB的中點(diǎn),D是線(xiàn)段CP上的一個(gè)動(dòng)點(diǎn),以CD為邊向右側(cè)作等邊△CDE,DEBC交于點(diǎn)M,連結(jié)BE

①求證:ADBE;

②連結(jié)BD,當(dāng)DB+DM最小時(shí),試在圖2中確定D的位置,并說(shuō)明理由;(要求用尺規(guī)作圖,保留作圖痕跡)

③在②的條件下,求△CME與△ACM的面積之比.

2)思維拓展:

如圖3,點(diǎn)P在邊AB的延長(zhǎng)線(xiàn)上,連接CP,點(diǎn)B關(guān)于直線(xiàn)CP的對(duì)稱(chēng)點(diǎn)為B',連結(jié)AB'CB',AB'BC于點(diǎn)N,交直線(xiàn)CP于點(diǎn)G,連結(jié)BG.請(qǐng)判斷∠AGC與∠AGB的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解答下列問(wèn)題:

神奇的等式

當(dāng)a≠b時(shí),一般來(lái)說(shuō)會(huì)有a2+b≠a+b2,然而當(dāng)ab是特殊的分?jǐn)?shù)時(shí),這個(gè)等式卻是成立的例如:

2+=+,(2+=+,(2+=+(2,…(2+=+(2,…

(1)特例驗(yàn)證:

請(qǐng)?jiān)賹?xiě)出一個(gè)具有上述特征的等式:   ;

(2)猜想結(jié)論:

n(n為正整數(shù))表示分?jǐn)?shù)的分母,上述等式可表示為:   ;

(3)證明推廣:

(2)中得到的等式一定成立嗎?若成立,請(qǐng)證明;若不成立,說(shuō)明理由;

②等式(2+=+(2(m,n為任意實(shí)數(shù),且n≠0)成立嗎?若成立,請(qǐng)寫(xiě)出一個(gè)這種形式的等式(要求m,n中至少有一個(gè)為無(wú)理數(shù));若不成立,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐﹣猜想、證明與拓廣

問(wèn)題情境:

數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問(wèn)題,如圖1,正方形ABCD中,點(diǎn)EBC邊上的一點(diǎn),點(diǎn)D關(guān)于直線(xiàn)AE的對(duì)稱(chēng)點(diǎn)為點(diǎn)F,直線(xiàn)DFAB于點(diǎn)H,直線(xiàn)FB與直線(xiàn)AE交于點(diǎn)G,連接DG,CG.

猜想證明

(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線(xiàn)段GFGD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:   

(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開(kāi)了討論:

小敏:根據(jù)軸對(duì)稱(chēng)的性質(zhì),很容易得到“GFGD的數(shù)量關(guān)系”…

小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如AFB,…

小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.

請(qǐng)你參考同學(xué)們的思路,完成證明;

(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線(xiàn)段CGDF,請(qǐng)你說(shuō)明理由;

聯(lián)系拓廣:

(4)如圖3若將題中的正方形ABCD”變?yōu)?/span>菱形ABCD“,ABC=α,其余條件不變,請(qǐng)?zhí)骄俊?/span>DFG的度數(shù),并直接寫(xiě)出結(jié)果(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知RtABC中,∠B=90°,A=60°,AC=2+4,點(diǎn)M、N分別在線(xiàn)段AC、AB上,將ANM沿直線(xiàn)MN折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在線(xiàn)段BC上,當(dāng)DCM為直角三角形時(shí),折痕MN的長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A,B,C在小正方形的頂點(diǎn)上.

1)在圖中畫(huà)出與ABC關(guān)于直線(xiàn)l成軸對(duì)稱(chēng)的ABC

2)三角形ABC的面積為   ;

3)在直線(xiàn)l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短.

查看答案和解析>>

同步練習(xí)冊(cè)答案