已知拋物線y=x2+(m+1)x-
1
4
m2-1
(m為整數(shù))與x軸交于點A,與y軸交于點B,且OA=OB,則m等于( 。
A、2+
5
B、2-
5
C、2
D、-2
分析:易得拋物線與y軸的交點,那么可得到與x軸的交點坐標(biāo),代入函數(shù)即可求得m的值.
解答:解:∵當(dāng)x=0時,y=-
1
4
m2-1
∴拋物線與y軸的交點B為(0,-
1
4
m2-1),
∵OA=OB
∴拋物線與x軸的交點A為(-
1
4
m2-1,0)或(
1
4
m2+1,0),
∴(-
1
4
m2-1)2+(m+1)(-
1
4
m2-1)-
1
4
m2-1=0或(
1
4
m2+1)2+(m+1)(
1
4
m2+1)-
1
4
m2-1=0,
-
1
4
m2-1=0或-
1
4
m2-1+m+1+1=0或
1
4
m2+1=0或
1
4
m2+1+m+1-1=0,
∵m為整數(shù)
∴m=-2.
故選D.
點評:此題考查了二次函數(shù)的性質(zhì),考查了二次函數(shù)與x軸、y軸的交點坐標(biāo),當(dāng)x=0時,求得二次函數(shù)與y軸的交點,當(dāng)y=0時,求得二次函數(shù)與x軸的交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
(2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點A,與y軸正半軸交于點B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
(1)求b、c的值;
(2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊答案