【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):
(1)畫(huà)出△ABC中BC邊上的高AD;
(2)畫(huà)出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;
(3)若格點(diǎn)△PAB與格點(diǎn)△PBC的面積相等,則這樣的點(diǎn)P共______個(gè).
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)4
【解析】
(1)根據(jù)網(wǎng)格特點(diǎn)和正方形的性質(zhì)畫(huà)出高AD即可;
(2)利用網(wǎng)格特點(diǎn)和平移的性質(zhì)畫(huà)出△A1B1C1即可;
(3)建立直角坐標(biāo)系,根據(jù)點(diǎn)到直線的距離公式列出方程求解即可得到兩條直線,找出這兩條直線上的格點(diǎn)即可.
(1)如圖所示,AD即為所求;
(2)如圖所示,△A1B1C1即為所求.
(3)如圖,以B為原點(diǎn),AB所在直線為x軸,過(guò)B點(diǎn)與AB垂直的直線為y軸,建立直角坐標(biāo)系,設(shè)
∴
∴
∴直線AB的解析式為y=0,直線BC的解析式為y=x
∵格點(diǎn)△PAB與格點(diǎn)△PBC的面積相等
∴
∴
∴
∴
∴
如圖,作直線和直線,找出這兩條直線上的格點(diǎn)即可
這樣的點(diǎn)P有4個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線A1C和OB1交于點(diǎn)M1;以M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M,對(duì)角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2和A3B3交于點(diǎn)M3;..依此類(lèi)推,這樣作的第6個(gè)正方形對(duì)角線交點(diǎn)的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)y=與y=(x>0,0<m<n)的圖象上,對(duì)角線BD∥y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷(xiāo)商從市場(chǎng)得知如下信息:
某品牌空調(diào)扇 | 某品牌電風(fēng)扇 | |
進(jìn)價(jià)(元/臺(tái)) | 700 | 100 |
售價(jià)(元/臺(tái)) | 900 | 160 |
他現(xiàn)有40000元資金可用來(lái)一次性購(gòu)進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺(tái),設(shè)該經(jīng)銷(xiāo)商購(gòu)進(jìn)空調(diào)扇臺(tái),空調(diào)扇和電風(fēng)扇全部銷(xiāo)售完后獲得利潤(rùn)為元.
(1)求關(guān)于的函數(shù)解析式;
(2)利用函數(shù)性質(zhì),說(shuō)明該經(jīng)銷(xiāo)商如何進(jìn)貨可獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校組織八年級(jí)350名學(xué)生參加“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 2 | 0.04 |
60≤x<70 | 6 | 0.12 |
70≤x<80 | 9 | b |
80≤x<90 | a | 0.36 |
90≤x≤100 | 15 | 0.30 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)求a和b的值;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=12,BC=9,AB=15,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒3個(gè)單位,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t=______時(shí),CP把△ABC的面積分成相等的兩部分;
(2)當(dāng)t=5時(shí),CP把△ABC分成的兩部分面積之比是S△APC:S△BPC=______
(3)當(dāng)t=______時(shí),△BPC的面積為18.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有一長(zhǎng)方形的空地,長(zhǎng)為米,寬為米,建筑商把它分成甲、乙、丙三部分,甲和乙為正方形.現(xiàn)計(jì)劃甲建筑成住宅區(qū),乙建成商場(chǎng)丙開(kāi)辟成公園.
請(qǐng)用含的代數(shù)式表示正方形乙的邊長(zhǎng); ;
若丙地的面積為平方米,請(qǐng)求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)軸上有A,B,C三個(gè)點(diǎn),分別表示有理數(shù)﹣24,﹣10,10,動(dòng)點(diǎn)P從A出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)用含t的代數(shù)式表示點(diǎn)P與A的距離:PA= ;點(diǎn)P對(duì)應(yīng)的數(shù)是 ;
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)C移動(dòng),若P、Q同時(shí)出發(fā),求:當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P和點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校240名學(xué)生參加植樹(shù)活動(dòng),要求每人植樹(shù)4~7棵,活動(dòng)結(jié)束后抽查了20名學(xué)生每人的植樹(shù)量,并分為四類(lèi):A類(lèi)4棵、B類(lèi)5棵、C類(lèi)6棵、D類(lèi)7棵,將各類(lèi)的人數(shù)繪制成如圖所示不完整的條形統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)補(bǔ)全條形圖;
(2)寫(xiě)出這20名學(xué)生每人植樹(shù)量的眾數(shù)和中位數(shù);
(3)估計(jì)這240名學(xué)生共植樹(shù)多少棵?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com