【題目】正方形ABCD中,點O是對角線DB的中點,點P是DB所在直線上的一個動點,PE⊥BC于E,PF⊥DC于F.

(1)當(dāng)點P與點O重合時(如圖①),猜測AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點P在線段DB上(不與點D、O、B重合)時(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當(dāng)點P在DB的長延長線上時,請將圖③補充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請寫出相應(yīng)的結(jié)論.

【答案】
(1)解:AP=EF,AP⊥EF,理由如下:

連接AC,則AC必過點O,延長FO交AB于M;

∵OF⊥CD,OE⊥BC,且四邊形ABCD是正方形,

∴四邊形OECF是正方形,

∴OM=OF=OE=AM,

∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,

∴△AMO≌△FOE(AAS),

∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,

故AP=EF,且AP⊥EF


(2)解:題(1)的結(jié)論仍然成立,理由如下:

延長AP交BC于N,延長FP交AB于M;

∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,

∴四邊形MBEP是正方形,

∴MP=PE,∠AMP=∠FPE=90°;

又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,

∴AM=PF,

∴△AMP≌△FPE(SAS),

∴AP=EF,∠APM=∠FPN=∠PEF

∵∠PEF+∠PFE=90°,∠FPN=∠PEF,

∴∠FPN+∠PFE=90°,即AP⊥EF,

故AP=EF,且AP⊥EF


(3)解:題(1)(2)的結(jié)論仍然成立;

如右圖,延長AB交PF于H,證法與(2)完全相同.


【解析】(1)連接AC,則AC必過O點,延長FO交AB于M,由于O是BD中點,易證得△AOM≌△FOE,則AO=EF,且∠AOM=∠FOC=∠OFE=45°,由此可證得AP⊥EF.(2)方法與①類似,延長FP交AB于M,延長AP交BC于N,易證得四邊形MBEP是正方形,可證得△APM≌△FEP,則AP=EF,∠APM=∠FEP;而∠APM=∠FPN=∠PEF,且∠PEF與∠PFE互余,故∠PFE+∠FPN=90°,由此可證得AP⊥EF,所以(1)題的結(jié)論仍然成立.(3)解題思路和方法同(2).
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6,m=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,∠BAD=120°,AB=4.求:

(1)對角線AC,BD的長;
(2)菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個多邊形的每一個外角都等于36°,下列說法錯誤的是( 。

A. 這個多邊形是十邊形 B. 這個多邊形的內(nèi)角和是1800°

C. 這個多邊形的每個內(nèi)角都是144° D. 這個多邊形的外角和是360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A、B在半徑為1的⊙O上,直線AC與⊙O相切,OC⊥OB,連接AB交OC于點D.

(Ⅰ)如圖①,若∠OCA=60°,求OD的長;

(Ⅱ)如圖②,OC與⊙O交于點E,若BE∥OA,求OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形,除一個內(nèi)角外,其余各內(nèi)角之和等于2020°,求這個內(nèi)角的度數(shù)及多邊形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(2x﹣7y)(3x+4y﹣1);
(2)(x﹣y)(x2+xy+y2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列現(xiàn)象是平移的是(

A. 直升電梯從底樓升到頂樓B. 衛(wèi)星圍繞地球運動

C. 磁帶上的轉(zhuǎn)動輪繞磁頭轉(zhuǎn)動D. 隨風(fēng)飄動的樹葉在空中的運動

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程kx2+2x﹣1=0有實數(shù)根,則實數(shù)k的取值范圍是( 。

A. k≥﹣1 B. k>﹣1 C. k≥﹣1k≠0 D. k≠0

查看答案和解析>>

同步練習(xí)冊答案