【題目】如圖,在△ABC中,AB=AC,D是邊BC上的一點(diǎn),DE⊥AB,DF⊥AC,垂足分別是E、F,EF∥BC.
(1)求證:△BDE≌△CDF;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:
(1)用ASA證明△BDE≌△CDF;
(2)由BC=2AD,得∠BAC=90°,從而四邊形AEDF是矩形,再由AE=AF即可得證.
試題解析:
證明:(1)∵AB=AC,∴∠B=∠C,
∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,
∴AE=AF,∴BE=CF,
∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,
在△BED和△CFD中,
,
∴△BDE≌△CDF.
(2)∵△BDE≌△CDF,∴BD=DC,DE=DF,
∵BC=2AD,∴AD=BC,∴∠BAC=90°,
∵DE⊥AB,DF⊥AC,∴∠EAF=∠AED=∠AFD=90°,∴四邊形AEDF是矩形,
∵AE=AF,∴四邊形AEDF是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)M、N位于第一象限,其中M的坐標(biāo)為(m,5),點(diǎn)N的坐標(biāo)(n,8),且m≥n.
(1)若MN與坐標(biāo)軸平行,則MN= ;
(2)若m、n、t滿(mǎn)足,MA⊥x軸,垂足為A,NB⊥x軸,垂足為B.
①求四邊形MABN的面積;
②連接MN、OM、ON,若△MON的面積大于26而小于30,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,∠AOB=60°,在AD上截取AE=AB,連接BE,EO,并求∠BEO的角度(要求:尺規(guī)作圖,保留痕跡,不寫(xiě)作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫(xiě)作法):
①作∠BAC的平分線(xiàn)AD,交BC于點(diǎn)D;
②作AB邊的垂直平分線(xiàn)EF,分別交AD,AB于點(diǎn)E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交DE的延長(zhǎng)線(xiàn)于F點(diǎn),連接AD、CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCF是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn):與軸交于點(diǎn),直線(xiàn):與軸交于點(diǎn),且經(jīng)過(guò)點(diǎn),直線(xiàn),交于點(diǎn).
(1)求的值;
(2)求直線(xiàn)的解析式;
(3)根據(jù)圖象,直接寫(xiě)出的解集.
(4)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板ABC和三角板BDE(∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置擺放.
(1)如圖1,若邊BD,BA在同一直線(xiàn)上,則∠EBC= ;
(2)如圖2,若∠EBC=165°,那么∠ABD= ;
(3)如圖3,若∠EBC=120°,求∠ABD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,12×12的正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,正方形的頂點(diǎn)叫做格點(diǎn).矩形ABCD的四個(gè)頂點(diǎn)A,B,C,D都在格點(diǎn)上,將△ADC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)得到△AD′C′,點(diǎn)C與點(diǎn)C′為對(duì)應(yīng)點(diǎn).
(1)在正方形網(wǎng)格中確定D′的位置,并畫(huà)出△AD′C′;
(2)若邊AB交邊C′D′于點(diǎn)E,求AE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com