如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE。
(1)求證:四邊形OGCH是平行四邊形;
(2)當點C在上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度;
(3)求證:CD2+3CH2是定值。

解:(1)連結(jié)OC交DE于M,

由矩形得OM=CG,EM=DM     
因為DG=HE
所以EM-EH=DM-DG
得HM=DG
所以四邊形OGCH是平行四邊形。
(2)DG不變,
在矩形ODCE中,DE=OC=3,
所以DG=1。
(3)設(shè)CD=x,則CE=

得CG=
所以
所以HG=3-1-
所以3CH2=
所以。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

正方形OCED與扇形OAB有公共頂點0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標系.如圖所示.正方形兩個頂點C、D分別在x軸、y軸正半軸上移動.設(shè)OC=x,OA=3
(1)當x=1時,正方形與扇形不重合的面積是
 
;此時直線CD對應(yīng)的函數(shù)關(guān)系式精英家教網(wǎng)
 

(2)當直線CD與扇形OAB相切時.求直線CD對應(yīng)的函數(shù)關(guān)系式;
(3)當正方形有頂點恰好落在
AB
上時,求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

正方形OCED與扇形OAB有公共頂點O,分別以O(shè)A、OB所在直線為x軸,y軸建立平面直角坐精英家教網(wǎng)標系.如圖所示、正方形兩個頂點C、D分別在x軸、y軸正半軸上移動、設(shè)OC=x,OA=3,則:
(1)當x=1時,正方形與扇形不重合的面積是
 

(2)當x=
 
時,直線CD與扇形OAB相切,此時切點坐標是
 
;
(3)當正方形有頂點恰好落在AB上時,求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

正方形OCED與扇形OAB有公共頂點0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標系.如圖所示.正方形兩個頂點C、D分別在x軸、y軸正半軸上移動.設(shè)OC=x,OA=3
(1)當x=1時,正方形與扇形不重合的面積是______;此時直線CD對應(yīng)的函數(shù)關(guān)系式是______;
(2)當直線CD與扇形OAB相切時.求直線CD對應(yīng)的函數(shù)關(guān)系式;
(3)當正方形有頂點恰好落在數(shù)學公式上時,求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(81):3.4 弧長和扇形的面積,圓錐的側(cè)面展開圖(解析版) 題型:解答題

正方形OCED與扇形OAB有公共頂點0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標系.如圖所示.正方形兩個頂點C、D分別在x軸、y軸正半軸上移動.設(shè)OC=x,OA=3
(1)當x=1時,正方形與扇形不重合的面積是______;此時直線CD對應(yīng)的函數(shù)關(guān)系式是______;
(2)當直線CD與扇形OAB相切時.求直線CD對應(yīng)的函數(shù)關(guān)系式;
(3)當正方形有頂點恰好落在上時,求正方形與扇形不重合的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年福建省福州市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•福州)正方形OCED與扇形OAB有公共頂點0,分別以O(shè)A,0B所在直線為x軸,y軸建立平面直角坐標系.如圖所示.正方形兩個頂點C、D分別在x軸、y軸正半軸上移動.設(shè)OC=x,OA=3
(1)當x=1時,正方形與扇形不重合的面積是______;此時直線CD對應(yīng)的函數(shù)關(guān)系式是______;
(2)當直線CD與扇形OAB相切時.求直線CD對應(yīng)的函數(shù)關(guān)系式;
(3)當正方形有頂點恰好落在上時,求正方形與扇形不重合的面積.

查看答案和解析>>

同步練習冊答案