【題目】已知拋物線y=a(x﹣1)2﹣3(a≠0)的圖象與y軸交于點A(0,﹣2),頂點為B.
(1)試確定a的值,并寫出B點的坐標(biāo);
(2)若一次函數(shù)的圖象經(jīng)過A、B兩點,試寫出一次函數(shù)的解析式;
(3)試在x軸上求一點P,使得△PAB的周長取最小值;
(4)若將拋物線平移m(m≠0)個單位,所得新拋物線的頂點記作C,與原拋物線的交點記作D,問:點O、C、D能否在同一條直線上?若能,請求出m的值;若不能,請說明理由.
【答案】(1)a=1,B(1,-3);(2)y=-x-2;(3)P(,0);(4)能,m=2或-3.
【解析】
試題分析:(1)把A點坐標(biāo)代入解析式中可求得a值,根據(jù)頂點式可寫出B點坐標(biāo);(2)由(1)可知A、B坐標(biāo),直線AB解析式可求出;(3)找出A點關(guān)于x軸對稱點E,連接BE交x軸于點P.求出BE解析式即可求出點P坐標(biāo);(4)如圖2,設(shè)拋物線向右平移m(若m>0表示向右平移,若m<0表示向左平移)個單位,得到新的拋物線的頂點C(1+m,﹣3),可求出直線OC解析式,解新舊拋物線聯(lián)立方程組求得交點D坐標(biāo)為(, ),把D坐標(biāo)代到OC解析式中得到m=2或m=﹣3,即可得到結(jié)論.
試題解析: (1)把A(0,﹣2)代入y=a(x﹣1)2﹣3得﹣2=a(0﹣1)2﹣3,解得:a=1,∴y=(x﹣1)2﹣3,∴B(1,﹣3);(2)設(shè)一次函數(shù)的解析式為y=kx+b,將A、B兩點的坐標(biāo)代入得:,
解得,∴一次函數(shù)的解析式為y=﹣x﹣2;(3)A點關(guān)于x軸的對稱點記作E,則E(0,2),
如圖1,連接EB交x軸于點P,則P點即為所求,設(shè)直線BE的解析式為y=px+q,則 ,解得,∴直線BE:y=﹣5x+2,當(dāng)y=0時,0=-5x+2,解得x=-.∴P(,0);(4)如圖2,設(shè)拋物線向右平移m(若m>0表示向右平移,若m<0表示向左平移)個單位,則所得新的拋物線的頂點C(1+m,﹣3),∴直線OC的解析式為,∴新拋物線解析式為 y=(x﹣1﹣m)2﹣3,解 ,得,∴兩拋物線的交點D(, ),代入直線OC解析式中得,解得:m=2或m=﹣3,∴O、C、D三點能夠在同一直線上,
此時m=2或m=﹣3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠B=90°,
(1)根據(jù)要求作圖(尺規(guī)作圖,保留作圖痕跡,不寫畫法):
①作∠BAC的平分線AD交BC于D;
②作線段AD的垂直平分線交AB于E,交AC于F,垂足為H;
③連接ED.
(2)在(1)的基礎(chǔ)上寫出一對全等三角形:△ ≌△ 并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )
A.y1<y2 B.y1>y2
C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中必然發(fā)生的事件是 ( )
A.一個圖形旋轉(zhuǎn)后所得的圖形與原來的圖形不全等
B.100件產(chǎn)品中有4件次品,從中任意抽取5件,至少一件是正品
C.不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式
D.隨意翻一本書的某頁,這頁的頁碼一定是偶數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(1,2a+3)在第一象限,且到x軸的距離與到y軸的距離相等,則a=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關(guān)于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成人體內(nèi)成熟的紅細(xì)胞的平均直徑一般為0.000007245m,保留三個有效數(shù)字的近似數(shù),可以用科學(xué)記數(shù)法表示為( 。
A.7.25×10﹣5mB.7.25×106mC.7.25×10﹣6mD.7.24×10﹣6m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標(biāo);
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2,當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com