【題目】如圖所示,某公路檢測中心在一事故多發(fā)地段安裝了一個測速儀器,檢測點設在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用時間為0.9秒,已知∠B=30°,∠C=45°.
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù): ≈1.7, ≈1.4)

【答案】
(1)解:如圖作AD⊥BC于D.則AD=10m,

在Rt△ACD中,∵∠C=45°,

∴AD=CD=10m,

在Rt△ABD中,∵∠B=30°,

∴tan30°= ,

∴BD= AD=10 m,

∴BC=BD+DC=(10+10 )m


(2)解:結論:這輛汽車超速.

理由:∵BC=10+10 27m,

∴汽車速度= =30m/s=108km/h,

∵108>80,

∴這輛汽車超速.


【解析】(1)如圖作AD⊥BC于D.則AD=10m,汽車CD、BD即可解決問題.(2)汽車汽車的速度,即可解決問題,注意統(tǒng)一單位;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)圖形填空:

(1)若直線ED,BC被直線AB所截,則∠1__________是同位角.

(2)若直線ED,BC被直線AF所截,則∠3__________是內錯角.

(3)1和∠3是直線AB,AF被直線__________所截構成的__________.

(4)2和∠4是直線__________,__________被直線BC所截構成的__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,BD、CE分別是邊AC、AB上的高,點MBC的中點,且MN⊥DE,垂足為點N

⑴求證:ME=MD;

⑵若BC=20cm,ED=12cm,求MN的長

⑶如果BD平分∠ABC,求證:AC=4EN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PMAB于點E,PNCD于點F.

(1)當△PMN所放位置如圖①所示時,求出∠PFD與∠AEM的數(shù)量關系;

(2)當△PMN所放位置如圖②所示時,求證:∠PFD-∠AEM=90°;

(3)(2)的條件下,若MNCD交于點O,且∠DON=15°,∠PEB=30°,求∠N的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知一個角的補角比它的余角的 3 倍大 30°,求這個角的度數(shù);

(2)如圖,點 C、D在線段 AB上, D是線段 AB的中點, AC AD , AB6,求線段 CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,AC=CD,B=E=90°,ACCD,則不正確的結論是( 。

A. 1=2 B. A =2 C. ABC≌△CED D. A與∠D互為余角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)閱讀以下內容:

已知實數(shù)x,y滿足x+y=2,且求k的值.

三位同學分別提出了以下三種不同的解題思路:

甲同學:先解關于x,y的方程組,再求k的值.

乙同學:先將方程組中的兩個方程相加,再求k的值.

丙同學:先解方程組,再求k的值.

(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進行簡要評價.

(評價參考建議:基于觀察到題目的什么特征設計的相應思路,如何操作才能實現(xiàn)這些思路、運算的簡潔性,以及你依此可以總結什么解題策略等等)

請先在以下相應方框內打勾,再解答相應題目.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,分別在軸,軸上,軸,軸.點從點出發(fā),以1個單位長度/秒的速度,沿五邊形的邊順時針勻速運動一周,若順次連接,三點所圍成的三角形的面積為,點運動的時間為秒,已知之間的函數(shù)關系如圖②中折線所示.

(1)圖①中點的坐標為   ;點的坐標為   ;

(2)求圖②中所在直線的解析式;

(3)是否存在點,使的面積為五邊形的面積的?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案