【題目】如圖,AD是ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結(jié)BF,CE.下列說法:

ABD和ACD面積相等;

②∠BAD=CAD;

③△BDF≌△CDE;

BFCE;

CE=AE.

其中正確的有(

A.1個 B.2個 C.3個 D.4個

【答案】C.

【解析】

試題分析①∵AD是ABC的中線,BD=CDF,∴△ABD和ACD面積相等;故正確;

若在ABC中,當AB≠AC時,AD不是BAC的平分線,即BAD≠CAD.即不一定正確;

③∵AD是ABC的中線,BD=CD,

BDF和CDE中,BD=CD,BDF=CDE,DF=DE,∴△BDF≌△CDE(SAS).故正確;

④∵△BDF≌△CDE,∴∠CED=BFD,BFCE;故正確;

⑤∵△BDF≌△CDE,CE=BF,只有當AE=BF時,CE=AE.故不一定正確.

綜上所述,正確的結(jié)論是:①③④,共有3個.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一項工程,甲、乙兩公司合做,12天可以完成,共需付工費102000元;如果甲、乙兩公司單獨完成此項公程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元。

1)甲、乙公司單獨完成此項工程,各需多少天?

2)若讓一個公司單獨完成這項工程,哪個公司施工費較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知三角形的邊長都是整數(shù),其中兩邊分別為51,則三角形的周長為________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.

1)求從袋中隨機摸出一球,標號是1的概率;

2)從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,+1個邊長為2的等邊三角形有一條邊在同一直線上,設(shè)的面積為,的面積為,,的面積為,則= ;=____ (用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】籃球比賽規(guī)定:勝一場得3分,負一場得1分.某籃球隊進行了6場比賽,得了14分,該隊獲勝的場數(shù)是(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個數(shù)的算術(shù)平方根和立方根都等于它本身,則這個數(shù)一定是( )
A.0或1
B.1或-1
C.0或±1
D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于EG、FH四點,連接EG、GF、FH、HE

1)如圖,試判斷四邊形EGFH的形狀,并說明理由;

2)如圖,當EFGH時,四邊形EGFH的形狀是

3)如圖,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;

4)如圖,在(3)的條件下,若ACBD,試判斷四邊形EGFH的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因式分解x2y﹣4y的結(jié)果是( 。

A. y(x2﹣4) B. y(x﹣2)2 C. y(x+4)(x﹣4) D. y(x+2)(x﹣2)

查看答案和解析>>

同步練習冊答案