如圖,在菱形ABCD中,DE⊥AB,cosA=
3
5
,BE=2,則該菱形的面積是______.
∵DE⊥AB,cosA=
3
5
,
∴設(shè)AE=3x,AD=5x,
∵BE=2,
∴菱形的邊AB=3x+2=5x,
解得x=1,
∴AE=3,AD=5,
在Rt△ADE中,DE=
AD2-AE2
=
52-32
=4,
∴該菱形的面積=AB•DE=5×4=20.
故答案為:20.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,圓O是△ABC的外接圓,圓心O在這個三角形的高CD上,E、F分別是邊AC和BC的中點,求證:四邊形CEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在菱形ABCD中,AE⊥BC,AF⊥CD,且E,F(xiàn)分別為BC,CD的中點,那么∠EAF的度數(shù)為( 。
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直角坐標系中,某四邊形的四個頂點的坐標分別為:A(4,-2),B(6,2),C(4,6),D(2,2).
(1)指出該四邊形是何特殊四邊形(不需要說理);
(2)若以四邊形的對角線BD的中點為原點,BD所在直線為橫軸,AC所在直線為縱軸,建立一個新直角坐標系,請直接寫出舊坐標系中的點E(-1,0)在新坐標系中的坐標;
(3)若點F在舊坐標系中的坐標是(a,b),那么它在新坐標系中的坐標是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在?ABCD中,AC⊥BC,AC=BC=2,動點P從點A出發(fā)沿AC向終點C移動,過點P分別作PMAB,PNAD,連結(jié)AM,設(shè)AP=x,△AMP的面積為y.
(1)四邊形PMCN是不是菱形,請說明理由.
(2)寫出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在菱形ABCD中,AE⊥BC于點E,AF⊥CD于點F,且E、F分別為BC、CD的中點,(如圖)則∠EAF等于(  )
A.75°B.45°C.60°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,順次連接四邊形ABCD各中點得四邊形EFGH,要使四邊形EFGH為菱形,應(yīng)添加的條件是( 。
A.ABDCB.AB=DCC.AC⊥BDD.AC=BD

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,O是菱形ABCD的對角線AC,BD的交點,E,F(xiàn)分別是OA,OC的中點.下列結(jié)論:①S△ADE=S△EOD;②四邊形BFDE是中心對稱圖形;③△DEF是軸對稱圖形;④∠ADE=∠EDO.其中錯誤的結(jié)論有多少個(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

順次連接四邊形ABCD各邊中點形成一個菱形,則原四邊形對角線AC、BD的關(guān)系是______.

查看答案和解析>>

同步練習冊答案