【題目】如圖,池中心豎直水管的頂端安一個噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達到最高,高度為3m,水柱落地處離池中心3m,水管的長為( 。

A.2.1mB.2.2mC.2.3mD.2.25m

【答案】D

【解析】

設(shè)拋物線的解析式為y= a(x-1)2+3(0≤x≤3),將(3,0)代入求得a值,則x=0時得的y值即為水管的長.

解:由于在距池中心的水平距離為1m時達到最高,高度為3m,

則設(shè)拋物線的解析式為:

y=a(x-1)2+3(0≤x≤3),

代入(3,0)得,

0=a×(3-1)2+3,

求得:a=

a值代入得到拋物線的解析式為:

y=-(x-1)2+3(0≤x≤3),

x=0,則y==2.25

則水管長為2.25m

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點BC、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點C,D之間的距離是10厘米,張角∠CAB60°.

(1)求支點D到滑軌MN的距離(精確到1厘米);

(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即ACAC′,BCBC)當張角∠CA'B45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.73,2.452.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O,AB是O的直徑.PC是O的切線,C為切點,PDAB于點D,交AC于點E.

(1)求證:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,以點為圓心,為半徑,作于點,交的延長線于點,過點的平行線于點,連接

1)試判斷的位置關(guān)系,并說明理由;

2)當________°時,四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca,b,c是常數(shù),a≠0)與x軸交于AB兩點,頂點Pm,n).給出下列結(jié)論

2a+c0;

②若在拋物線上,則y1y2y3

③關(guān)于x的方程ax2+bx+k0有實數(shù)解,則kcn;

④當n=﹣時,△ABP為等腰直角三角形;

其中正確結(jié)論個數(shù)有( 。﹤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標有漢字、、、的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個球,求摸出球上的漢字剛好是的概率;

(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成美麗光明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接ACOD,若∠A與∠DOB互余,則EB的長是(

A.2B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的一條弦,點O在線段AC上,AC=AB,OC=3,sinA=.求:(1)O的半徑長;(2)BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當銷售單價為22元時,銷售量為36本;當銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案