(2013年浙江義烏10分)為迎接中國森博會(huì),某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù).下表提供了部分采購數(shù)據(jù).

采購數(shù)量(件)
1
2

A產(chǎn)品單價(jià)(元/件)
1480
1460

B產(chǎn)品單價(jià)(元/件)
1290
1280

(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購單價(jià)不低于1200元.求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完.在(2)的條件下,求采購A種產(chǎn)品多少件時(shí)總利潤(rùn)最大,并求最大利潤(rùn).

解:(1)設(shè)y1與x的關(guān)系式y(tǒng)1=kx+b,
由表得:
,解得。
(0<x≤20,x為整數(shù))。
(2)根據(jù)題意可得,,
解得11≤x≤1。
∵x為整數(shù),
∴x可取的值為:11,12,13,14,15。
∴該商家共有5種進(jìn)貨方案。
(3)令總利潤(rùn)為W,
。
∵a=30>0,∴當(dāng)x≥9時(shí),W隨x的增大而增大。
∵11≤x≤15,∴當(dāng)x=15時(shí),W最大=10650。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與直線y=x交于點(diǎn)A,點(diǎn)B在直線上,∠BOA=90°.拋物線過點(diǎn)A,O,B,頂點(diǎn)為點(diǎn)E.

(1)求點(diǎn)A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對(duì)稱軸交于點(diǎn)C,直線BC交拋物線于點(diǎn)D,過點(diǎn)E作FE∥x軸,交直線AB于點(diǎn)F,連接OD,CF,CF交x軸于點(diǎn)M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A     ,k=     
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△COD.

(1)點(diǎn)C的坐標(biāo)是     ,線段AD的長(zhǎng)等于     ;
(2)點(diǎn)M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點(diǎn)G,M,求拋物線的解析式;
(3)如果點(diǎn)E在y軸上,且位于點(diǎn)C的下方,點(diǎn)F在直線AC上,那么在(2)中的拋物線上是否存在點(diǎn)P,使得以C,E,F(xiàn),P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出該菱形的周長(zhǎng)l;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川綿陽12分)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點(diǎn),其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點(diǎn)P(P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川廣安10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.
①動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)M或N恰好落在拋物線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),交y軸于點(diǎn)E.

(1)求此拋物線的解析式.
(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù) (a、m為常數(shù),且a¹0)。
(1)求證:不論a與m為何值,該函數(shù)的圖像與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖像的頂點(diǎn)為C,與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)D。
①當(dāng)△ABC的面積等于1時(shí),求a的值:
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案