【題目】如圖,在中,,點(diǎn)P從點(diǎn)B出發(fā),沿折線(xiàn)運(yùn)動(dòng),當(dāng)它到達(dá)點(diǎn)A時(shí)停止,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為點(diǎn)Q是射線(xiàn)CA上一點(diǎn),,連接設(shè),.
求出,與x的函數(shù)關(guān)系式,并注明x的取值范圍;
補(bǔ)全表格中的值;
x | 1 | 2 | 3 | 4 | 6 |
______ | ______ | ______ | ______ | ______ |
以表中各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn),并在x的取值范圍內(nèi)畫(huà)出的函數(shù)圖象:
在直角坐標(biāo)系內(nèi)直接畫(huà)出函數(shù)圖象,結(jié)合和的函數(shù)圖象,求出當(dāng)時(shí),x的取值范圍.
【答案】(1),;(2)12,6,4,3,2,(3),見(jiàn)解析.
【解析】
根據(jù)題意可以分別求得,與x的函數(shù)關(guān)系式,并注明x的取值范圍;
根據(jù)中的函數(shù)解析式,可以將表格補(bǔ)充完整,并畫(huà)出相應(yīng)的函數(shù)圖象;
根據(jù)中的函數(shù)解析式,可以畫(huà)出的函數(shù)圖象,然后結(jié)合圖象可以得到當(dāng)時(shí),x的取值范圍,注意可以先求出時(shí)x的值.
由題意可得,
,
當(dāng)時(shí),,
當(dāng)時(shí),,
即,;
,
當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;
故答案為:12,6,4,3,2;
在x的取值范圍內(nèi)畫(huà)出的函數(shù)圖象如圖所示;
,
則函數(shù)圖象如圖所示,
當(dāng)時(shí),得;當(dāng)時(shí),;
則由圖象可得,當(dāng)時(shí),x的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,AD⊥BC于D,點(diǎn)E在AD上,∠BEC=135°,若BC=5,S△ECA=2,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=9,BC=12.點(diǎn)Q是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線(xiàn)交射線(xiàn)AB于點(diǎn)P.當(dāng)△PQB為等腰三角形時(shí),則AP的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,橫坐標(biāo)分別為1,4,對(duì)角線(xiàn)BD∥x軸.若菱形ABCD的面積為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,.
(1)如圖1,點(diǎn)為線(xiàn)段的中點(diǎn),連接,.若,求線(xiàn)段的長(zhǎng).
(2)如圖2,為線(xiàn)段上一點(diǎn)(不與,重合),以為邊向上構(gòu)造等邊三角形,線(xiàn)段與交于點(diǎn),連接,,為線(xiàn)段的中點(diǎn).連接,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)在(2)的條件下,若,請(qǐng)你直接寫(xiě)出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)解析式為y=(m-2)
(1)若函數(shù)為正比例函數(shù),試說(shuō)明函數(shù)y隨x增大而減小
(2)若函數(shù)為二次函數(shù),寫(xiě)出函數(shù)解析式,并寫(xiě)出開(kāi)口方向
(3)若函數(shù)為反比例函數(shù),寫(xiě)出函數(shù)解析式,并說(shuō)明函數(shù)在第幾象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備投資開(kāi)發(fā)A、B兩種新產(chǎn)品,通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):如果單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿(mǎn)足正比例函數(shù)關(guān)系:yA=kx;如果單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿(mǎn)足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報(bào)告,yA、yB(萬(wàn)元)與投資金額x(萬(wàn)元)的部分對(duì)應(yīng)值(如下表)
(1)求正比例函數(shù)和二次函數(shù)的解析式;
(2)如果公司準(zhǔn)備投資20萬(wàn)元同時(shí)開(kāi)發(fā)A、B兩種新產(chǎn)品,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AB=4,AD=6,∠ABC的平分線(xiàn)交AD于點(diǎn)E,交CD的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求DF的長(zhǎng);
(2)點(diǎn)H為CD的中點(diǎn),連接AH交BF于點(diǎn)G,點(diǎn)G是BF的中點(diǎn)嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com