【題目】如圖,已知∠ADB=ADC,則不一定能使△ABD≌△ACD的條件是(  )

A. AB=AC B. BD=CD C. B=C D. BAD=CAD

【答案】A

【解析】利用全等三角形判定定理ASA,SAS,AAS對(duì)各個(gè)選項(xiàng)逐一分析即可得出答案.

A.∵∠ADB=ADC,AD為公共邊,AB=AC,不符合全等三角形判定定理,不能判定ABDACD;

B.∵∠ADB=ADC,AD為公共邊,BD=CD,ABDACD(SAS);

C.∵∠ADB=ADC,AD為公共邊,若∠B=C,ABDACD(AAS);

D.∵∠ADB=ADC,AD為公共邊,若∠BAD=CAD,ABDACD(ASA);

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖:拋物線y=x2﹣1與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.

(1)求A,B,C三點(diǎn)的坐標(biāo).
(2)過(guò)點(diǎn)A作AP∥CB交拋物線于點(diǎn)P,求四邊形ACBP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點(diǎn)PAD 邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在運(yùn)動(dòng)以后,以PD、Q、B四點(diǎn)組成平行四邊形的次數(shù)有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過(guò)點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC.

(1)求證:OE=OF;

(2)若EF⊥AC,平行四邊形ABCD的周長(zhǎng)是22,求△BEC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:OB,OM,ON內(nèi)的射線.

如圖1,若OM平分,ON平分當(dāng)射線OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),______

也是內(nèi)的射線,如圖2,若OM平分,ON平分,當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大。

的條件下,若,當(dāng)O點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,如圖3,若3,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠DAB=∠CAE,要使△ABC∽△ADE,則補(bǔ)充的一個(gè)條件可以是(注:只需寫(xiě)出一個(gè)正確答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是(請(qǐng)?zhí)钌暇幪?hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種牛奶軟包裝盒如圖1所示.為了生產(chǎn)這種包裝盒,需要先畫(huà)出展開(kāi)圖紙樣.

(1)如圖2給出三種紙樣甲.乙.丙,在甲.乙.丙中,正確的有________.

(2)從已知正確的紙樣中選出一種,在原圖上標(biāo)注上尺寸.

(3)利用你所選的一種紙樣,求出包裝盒的側(cè)面積和表面積(側(cè)面積與兩個(gè)底面積的和)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,不正確的是(

A. 平方等于本身的數(shù)只有 B. 正數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù)

C. 兩個(gè)數(shù)的差為正數(shù),至少其中有一個(gè)正數(shù) D. 兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小

查看答案和解析>>

同步練習(xí)冊(cè)答案