【題目】某商場服裝部為了調動營業(yè)員的積極性,決定實行目標管理,即確定一個月銷售目標,根據目標完成的情況對營業(yè)員進行適當?shù)莫剳停疄榱舜_定一個適當?shù)哪繕,商場統(tǒng)計了每個營業(yè)員在某月的銷售額,統(tǒng)計圖如下:

請你結合統(tǒng)計圖和平均數(shù)、眾數(shù)和中位數(shù)解答下列問題:(結果保留整數(shù))

(1)月銷售額在哪個值的人最多?月銷售額處于中間的是多少?月平均銷售額是多少?

(2)如果想確定一個較高的銷售目標,你認為月銷售額定為多少合適?請說明理由.

【答案】(1) 月銷售額在15萬元的人最多;月銷售額處于中間的是18萬元;月平均銷售額是20萬元;(2)月銷售額定為每月20萬元是一個較高的目標.理由見解析.

【解析】

眾數(shù)是出現(xiàn)次數(shù)最多的數(shù),平均數(shù)是所有數(shù)據之和除以數(shù)據的個數(shù),中位數(shù)是從小到大排列之后處于中間位置的一個數(shù)或者處于中間位置的兩個數(shù)的平均數(shù),運用眾數(shù),中位數(shù)和平均數(shù)的定義解答.

(1)因為眾數(shù)為15萬元,所以月銷售額在15萬元的人最多;總人數(shù)為30人,處于中間位置的是第1516個人,他們的銷售額均為18萬元,即中位數(shù)是18萬元,所以月銷售額處于中間的是18萬元;月平均銷售額是(131415×516×417×318×219×322232426×228×33032×2)÷30≈20(萬元)

(2)因為平均數(shù)、中位數(shù)和眾數(shù)分別為20萬元、18萬元和15萬元,而平均數(shù)最大,所以月銷售額定為每月20萬元是一個較高的目標.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩市相距150千米,分別從A、B處測得國家級風景區(qū)中心C處的方向角如圖所示,風景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關部門設計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓O的內接四邊形ABCD中,BC=DC,∠BOC=130°,則∠BAD的度數(shù)是( ).

A.120°
B.130°
C.140°
D.150°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,等邊△ABC中,ADBC邊上的中線,根據等腰三角形的三線合一特性,AD平分∠BAC,且ADBC,則有∠BAD=30°,BD=CD=AB.于是可得出結論直角三角形中,30°角所對的直角邊等于斜邊的一半”.

請根據從上面材料中所得到的信息解答下列問題:

(1)如圖2所示,在△ABC中,∠ACB=90°,BC的垂直平分線交AB于點D,垂足為E,當BD=5cm,B=30°時,求△ACD的周長.

(2)如圖3所示,在△ABC中,AB=AC,A=120°,DBC的中點,DEAB,垂足為E,求BE:EA的值.

(3)如圖4所示,在等邊△ABC中,D、E分別是BC、AC上的點,且AE=DC,AD、BE交于點P,作BQADQ,若BP=2,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF= BF= ;(用含m的式子表示)

2)請用含mn的式子表示圖1,圖2中的s1s2,若m-n=2,請問S2-S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD(圖1)按如下步驟操作:

1)以過點A的直線為折痕折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖2);

2)以過點E的直線為折痕折疊紙片,使點A落在BC邊上,折痕EFAD邊于點F(如圖3);

3)將紙片收展平,那么∠AFE的度數(shù)為( 。

A. 60° B. 67.5° C. 72° D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,菱形紙片ABCD的邊長為2,∠ABC=60°,將菱形ABCD沿EF,GH折疊,使得點B,D兩點重合于對角線BD上一點P(如圖2),則六邊形AEFCHG面積的最大值是(
A.
B.
C.2﹣
D.1+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)若∠AOC=30°時,則∠DOE的度數(shù)為_____

(2)將圖①中的∠COD繞頂點O順時針旋轉至圖②的位置,其它條件不變,探究∠AOC和∠DOE的度數(shù)之間的關系,寫出你的結論,并說明理由;

(3)將圖①中的∠COD繞頂點O順時針旋轉至圖③的位置,其他條件不變.直接寫出∠AOC和∠DOE的度數(shù)之間的關系:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是等邊三角形,DBC邊上一個動點(DBC均不重合),AD=AE,∠DAE=60°,連接CE

1)求證:ABD≌△ACE

2)求證:CE平分∠ACF;

3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.

查看答案和解析>>

同步練習冊答案