若直角梯形的一腰是另一腰的2倍,則這個梯形的最大角與最小角之比是

[  ]

A.2∶1
B.3∶1
C.4∶1
D.5∶1
答案:D
解析:

如圖:過D作DE⊥BC于E

∵AD∥BE,AB∥DE,且∠A=90°

∴四邊形ABED是矩形

∴DE=AB

∵CD是AB的2倍,DE⊥BC

又∵CD=2DE

∴∠C=30°

∵AD∥BC

∴∠D+∠C=180°

∴∠D=120°

∴這個梯形的最大角與最小角之比是4∶1

∴選C


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1、2,已知拋物線y=ax2+bx+3經過點B(-1,0)、C(3,0),交y軸于點A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設運動時間為t秒.當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點為K,KI⊥x軸于I點,一塊三角板直角頂點P在線段KI上滑動,且一直角邊過A點,另一直角邊與x軸交于Q(m,0),請求出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1、2,已知拋物線y=ax2+bx+3經過點B(-1,0)、C(3,0),交y軸于點A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點A的直線與x軸交于點D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點D開始,沿射線DA方向勻速運動,運動的速度為1個長度單位/秒,在運動過程中腰FG與直線AD始終重合,設運動時間為t秒.當t為何值時,以M、O、H、E為頂點的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點為K,KI⊥x軸于I點,一塊三角板直角頂點P在線段KI上滑動,且一直角邊過A點,另一直角邊與x軸交于Q(m,0),請求出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年山東省泰安市九年級上學期期末考試數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(﹣1,0),對稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個交點B的坐標;

(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.若以AB為一底邊的梯形ABCD的面積為9.

求此拋物線的解析式,并指出頂點E的坐標;

(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.

①當t為    秒時,△PAD的周長最��?當t為      秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)

②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,在直角梯形ABCD中,AD∥BC,AB⊥BC,∠DCB=75º,以CD為一邊的等邊DCE的另一頂點E在腰AB上.

(1)求∠AED的度數(shù);

(2)連接AC,試說明:△ABC是等腰三角形;

(3)如圖2所示,若F為線段CD上一點,∠FBC=30º.求證: DF =FC;


查看答案和解析>>

同步練習冊答案