如圖,在△ABC中,分別以AC,AB,BC為邊向外作正方形,面積分別記為S1,S2,S3,若S1=6,S2=6,S3=12,則△ABC的形狀是
等腰直角三角形
等腰直角三角形
分析:由已知得三個正方形的面積分別是三角形各邊的平方,則AB=AC,又由已知得其符合勾股定理的逆定理,從而得到其是一個等腰直角三角形.
解答:解:∵S1=AC2=6,S2=AB2=6,S3=BC2=12,
∴AC2=AB2=6,AB2+AC2=BC2
∴△ABC是等腰直角三角形.
故答案為等腰直角三角形.
點評:本題考查了勾股定理的逆定理、等腰三角形的判定及正方形面積公式的運用,解題關鍵是明確直角三角形的邊長的平方即為相應的正方形的面積,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案