【題目】某工廠(chǎng)大門(mén)是一拋物線(xiàn)形水泥建筑物(如圖),大門(mén)地面寬AB=4米,頂部C離地面高度為4.4米.現(xiàn)有一輛滿(mǎn)載貨物的汽車(chē)欲通過(guò)大門(mén),貨物頂部距地面2.8米,裝貨寬度為2.4米.請(qǐng)通過(guò)計(jì)算,判斷這輛汽車(chē)能否順利通過(guò)大門(mén)?
【答案】這輛汽車(chē)正好可以通過(guò)大門(mén).
【解析】
試題本題只要計(jì)算大門(mén)頂部寬2.4米的部分離地面是否超過(guò)2.8米即可.如果設(shè)C點(diǎn)是原點(diǎn),那么A的坐標(biāo)就是(-2,-4.4),B的坐標(biāo)是(2,-4.4),可設(shè)這個(gè)函數(shù)為y=kx2,那么將A的坐標(biāo)代入后即可得出y=-1.1x2,那么大門(mén)頂部寬2.4m的部分的兩點(diǎn)的橫坐標(biāo)就應(yīng)該是-1.2和1.2,因此將x=1.2代入函數(shù)式中可得y≈-1.6,因此大門(mén)頂部寬2.4m部分離地面的高度是4.4-1.6=2.8m,因此這輛汽車(chē)正好可以通過(guò)大門(mén).
試題解析:根據(jù)題意知,A(-2,-4.4),B(2,-4.4),設(shè)這個(gè)函數(shù)為y=kx2.
將A的坐標(biāo)代入,得y=-1.1x2,
∴E、F兩點(diǎn)的橫坐標(biāo)就應(yīng)該是-1.2和1.2,
∴將x=1.2代入函數(shù)式,得
y≈-1.6,
∴GH=CH-CG=4.4-1.6=2.8m,
因此這輛汽車(chē)正好可以通過(guò)大門(mén).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC',連接B'C'.當(dāng)α+β=180°時(shí),我們稱(chēng)△A'B'C'是△ABC的“旋補(bǔ)三角形”,△AB'C'邊B'C'上的中線(xiàn)AD叫做△ABC的“旋補(bǔ)中線(xiàn)”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補(bǔ)三角形”,AD是△ABC的“旋補(bǔ)中線(xiàn)”.
①如圖2,當(dāng)△ABC為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為AD= BC;
②如圖3,當(dāng)∠BAC=90°,BC=8時(shí),則AD長(zhǎng)為 .
猜想論證:
(2)在圖1中,當(dāng)△ABC為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為早日實(shí)現(xiàn)脫貧奔小康的宏偉目標(biāo),我市結(jié)合本地豐富的山水資源,大力發(fā)展旅游業(yè),王家莊在當(dāng)?shù)卣闹С窒,辦起了民宿合作社,專(zhuān)門(mén)接待游客,合作社共有80間客房.根據(jù)合作社提供的房間單價(jià)x(元)和游客居住房間數(shù)y(間)的信息,樂(lè)樂(lè)繪制出y與x的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)合作社規(guī)定每個(gè)房間價(jià)格不低于60元且不超過(guò)150元,對(duì)于游客所居住的每個(gè)房間,合作社每天需支出20元的各種費(fèi)用,房?jī)r(jià)定為多少時(shí),合作社每天獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)共有500名學(xué)生,在“世界讀書(shū)日”前夕,開(kāi)展了“閱讀助我成長(zhǎng)”的讀書(shū)活動(dòng).為了解該年級(jí)學(xué)生在此次活動(dòng)中課外閱讀情況,童威隨機(jī)抽取m名學(xué)生,調(diào)查他們課外閱讀書(shū)籍的數(shù)量,將收集的數(shù)據(jù)整理成如下統(tǒng)計(jì)表和扇形圖.
學(xué)生讀書(shū)數(shù)量統(tǒng)計(jì)表
閱讀量/本 | 學(xué)生人數(shù) |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接寫(xiě)出m、a、b的值;
(2)估計(jì)該年級(jí)全體學(xué)生在這次活動(dòng)中課外閱讀書(shū)籍的總量大約是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,在△ABC中,∠ACB=90°,AC=BC,在三角形內(nèi)取一點(diǎn)D,AD=AC,∠CAD=30°,求∠ADB.
小明通過(guò)探究發(fā)現(xiàn),∠DAB=∠DCB=15°,BC=AD,這樣就具備了一邊一角的圖形特征,他果斷延長(zhǎng)CD至點(diǎn)E,使CE=AB,連接EB,造出全等三角形,使問(wèn)題得到解決.
(1)按照小明思路完成解答,求∠ADB;
(2)參考小明思考問(wèn)題的方法,解答下列問(wèn)題:
如圖2,△ABC中,AB=AC,點(diǎn)D、E、F分別為BC、AC、AB上一點(diǎn),連接DE,延長(zhǎng)FE、DF分別交BC、CA延長(zhǎng)線(xiàn)于點(diǎn)G、H,若∠DHC=∠EDG=2∠G.
①在圖中找出與∠DEC相等的角,并加以證明;
②若BG=kCD,猜想DE與DG的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過(guò)點(diǎn)A作AC⊥x軸于點(diǎn)C,過(guò)點(diǎn)B作BD⊥x軸于點(diǎn)D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點(diǎn)P在直線(xiàn)y=﹣x+2上,且S△ACP=S△BDP,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);
(3)在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在同一平面直角坐標(biāo)系中,反比例函數(shù)y=與二次函數(shù)y=-x2+2x+c的圖象交于點(diǎn)A(-1,m).
(1)求m,c的值;
(2)求二次函數(shù)圖象的對(duì)稱(chēng)軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線(xiàn)交⊙O于點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com