【題目】廣元市某中學(xué)舉行了“禁毒知識(shí)競(jìng)賽”,王老師將九年級(jí)(1)班學(xué)生成績(jī)劃分為A、B、C、D、E五個(gè)等級(jí),并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
(1)求九年級(jí)(1)班共有多少名同學(xué)?
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“C”所對(duì)應(yīng)的圓心角度數(shù);
(3)成績(jī)?yōu)?/span>A類的5名同學(xué)中,有2名男生和3名女生;王老師想從這5名同學(xué)中任選2名同學(xué)進(jìn)行交流,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求選取的2名同學(xué)都是女生的概率.
【答案】(1)50;(2)見(jiàn)解析,108°;(3).
【解析】
(1)由B的人數(shù)和其所占的百分比即可求出總?cè)藬?shù);
(2)C的人數(shù)可知,而總?cè)藬?shù)已求出,進(jìn)而可求出其所對(duì)應(yīng)扇形的圓心角的度數(shù);根據(jù)求出的數(shù)據(jù)即可補(bǔ)全條形統(tǒng)計(jì)圖;
(3)列表得出所有等可能的情況數(shù),找出剛好抽到2名同學(xué)都是女生的情況數(shù),即可求出所求的概率.
解:(1)由題意可知總?cè)藬?shù)=10÷20%=50名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
扇形統(tǒng)計(jì)圖中C等級(jí)所對(duì)應(yīng)扇形的圓心角=15÷50×100%×360°=108°;
(3)列表如下:
得到所有等可能的情況有20種,其中恰好抽中2名同學(xué)都是女生的情況有6種,
所以恰好選到2名同學(xué)都是女生的概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速公路管理部門工作人員在對(duì)某段高速公路進(jìn)行安全巡檢過(guò)程中,發(fā)現(xiàn)該高速公路旁的一斜坡存在落石隱患.該斜坡橫斷面示意圖如圖所示,水平線,點(diǎn)A、B分別在、上,斜坡AB的長(zhǎng)為18米,過(guò)點(diǎn)B作于點(diǎn)C,且線段AC的長(zhǎng)為米.
(1)求該斜坡的坡高BC;(結(jié)果用最簡(jiǎn)根式表示)
(2)為降低落石風(fēng)險(xiǎn),該管理部門計(jì)劃對(duì)該斜坡進(jìn)行改造,改造后的斜坡坡腳為60°,過(guò)點(diǎn)M作于點(diǎn)N,求改造后的斜坡長(zhǎng)度比改造前的斜坡長(zhǎng)度增加了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等邊三角形,點(diǎn)D為直線BC上的一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊作等邊(頂點(diǎn)A、D、E按逆時(shí)針?lè)较蚺帕校,連接CE.
(1)問(wèn)題發(fā)現(xiàn)
如圖①,當(dāng)點(diǎn)D在邊BC上時(shí),填空:
①線段BD,CE之間的數(shù)量關(guān)系為________;
②線段AC、CE、CD三者之間的數(shù)量關(guān)系為________;
(2)拓展研究
如圖②,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上且其他條件不變時(shí),請(qǐng)寫(xiě)出AC、CE、CD之間存在的數(shù)量關(guān)系,并說(shuō)明理由;
(3)解決問(wèn)題
如圖③,當(dāng)點(diǎn)D在邊BC的反向延長(zhǎng)線上且其他條件不變時(shí),若,,請(qǐng)直接寫(xiě)出線段CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AD的中點(diǎn),點(diǎn)F,G在AB上,EF⊥AB,OG∥EF.
(1)求證:四邊形OEFG是矩形;
(2)若AD=10,EF=4,求OE和BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,⊙O的半徑為1,A,B為⊙O外兩點(diǎn),AB=1.給出如下定義:平移線段AB,得到⊙O的弦(分別為點(diǎn)A,B的對(duì)應(yīng)點(diǎn)),線段長(zhǎng)度的最小值稱為線段AB到⊙O的“平移距離”.
(1)如圖,平移線段AB到⊙O的長(zhǎng)度為1的弦和,則這兩條弦的位置關(guān)系是 ;在點(diǎn)中,連接點(diǎn)A與點(diǎn) 的線段的長(zhǎng)度等于線段AB到⊙O的“平移距離”;
(2)若點(diǎn)A,B都在直線上,記線段AB到⊙O的“平移距離”為,求的最小值;
(3)若點(diǎn)A的坐標(biāo)為,記線段AB到⊙O的“平移距離”為,直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線分別與x軸,y軸交于點(diǎn)A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),拋物線經(jīng)過(guò)A,C兩點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D是直線AB下方的拋物線上的一點(diǎn),且的面積為,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P為拋物線上一點(diǎn),若是以AB為直角邊的直角三角形,求點(diǎn)P到拋物線的對(duì)稱軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形ABCD沿EF,GH折疊,使點(diǎn)B,C落在AD上同一點(diǎn)P處,∠FPG=90°,△A′EP的面積是8,△D′PH的面積是4,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃投入50萬(wàn)元,開(kāi)發(fā)并生產(chǎn)甲乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查預(yù)計(jì)甲產(chǎn)品的年獲利y1(萬(wàn)元)與投入資金x(萬(wàn)元)成正比例,乙產(chǎn)品的年獲利y2(萬(wàn)元)與投入資金x(萬(wàn)元)的平方成正比例,設(shè)該公司投入乙產(chǎn)品x(萬(wàn)元),兩種產(chǎn)品的年總獲利為y萬(wàn)元(x≥0),得到了表中的數(shù)據(jù).
x(萬(wàn)元) | 20 | 30 |
y(萬(wàn)元) | 10 | 13 |
(1)求y與x的函數(shù)關(guān)系式;
(2)該公司至少可獲得多少利潤(rùn)?請(qǐng)你利用所學(xué)的數(shù)學(xué)知識(shí)對(duì)該公司投入資金的分配提出合理化建
議,使他能獲得最大利潤(rùn),并求出最大利潤(rùn)是多少?
(3)若從年總利潤(rùn)扣除投入乙產(chǎn)品資金的a倍(a≤1)后,剩余利潤(rùn)隨x增大而減小,求a的取值
范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D是△ABC內(nèi)一點(diǎn),BD⊥CD,E、F、G、H分別是邊AB、BD、CD、AC的中點(diǎn).若AD=10,BD=8,CD=6,則四邊形EFGH的周長(zhǎng)是( )
A.24B.20C.12D.10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com