【題目】某校實(shí)施課程改革,為初三學(xué)生設(shè)置了A,B,C,D,E,F(xiàn)共六門不同的拓展性課程,現(xiàn)隨機(jī)抽取若干學(xué)生進(jìn)行了“我最想選的一門課”調(diào)查,并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)

選修課

A

B

C

D

E

F

人數(shù)

20

30

根據(jù)圖標(biāo)提供的信息,下列結(jié)論錯誤的是(

A.這次被調(diào)查的學(xué)生人數(shù)為200人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中最想選F的人數(shù)為35人
D.被調(diào)查的學(xué)生中最想選D的有55人

【答案】D
【解析】解:A、這次被調(diào)查的學(xué)生人數(shù)為 =200人,故此選項(xiàng)正確; B、A課程百分比為 ×100%=10%,D課程百分比為 ×100%=25%,
則E所對扇形圓心角度數(shù)為360°×(1﹣10%﹣15%﹣12.5%﹣25%﹣17.5%)=72°,故此選項(xiàng)正確;
C、被調(diào)查的學(xué)生中最想選F的人數(shù)為200×17.5%=35人,故此選項(xiàng)正確;
D、被調(diào)查的學(xué)生中最想選D的有200×25%=50人,故此選項(xiàng)錯誤;
故選:D.
由B課程的人數(shù)及其百分比可得總?cè)藬?shù),即可判斷A選項(xiàng);先求得E課程所占百分比,再乘以360度即可判斷B;總?cè)藬?shù)乘以D、F的百分比即可求得人數(shù),從而判斷出C、D選項(xiàng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形ABCD中,點(diǎn)PCD中點(diǎn),點(diǎn)Q從點(diǎn)A開始,沿著A→B→C→P的路線勻速運(yùn)動,設(shè)APQ的面積是y,點(diǎn)Q經(jīng)過的路線長度為x,圖2坐標(biāo)系中折線OEFG表示yx之間的函數(shù)關(guān)系,點(diǎn)E的坐標(biāo)為(4,6),則點(diǎn)G的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣bx+2(a≠0)圖象的頂點(diǎn)在第二象限,且過點(diǎn)(1,0),則a的取值范圍是;若a+b的值為非零整數(shù),則b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D,EF,AD、BE的長為方程的兩個根,則△ABC的周長為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)P是線段AB上的一動點(diǎn),以P為圓心,r為半徑畫圓.

(1)若點(diǎn)P的橫坐標(biāo)為﹣3,當(dāng)⊙Px軸相切時,則半徑r ,此時⊙Py軸的位置關(guān)系是 .(直接寫結(jié)果)

(2)若,當(dāng)⊙P與坐標(biāo)軸有且只有3個公共點(diǎn)時,求點(diǎn)P的坐標(biāo).

(3)如圖2,當(dāng)圓心PA重合,時,設(shè)點(diǎn)C為⊙P上的一個動點(diǎn),連接OC,將線段OC繞點(diǎn)O順時針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長的最值并直接寫出對應(yīng)的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ACB90°,點(diǎn)D,E分別在AB,AC上,CEBC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補(bǔ)充完成圖形;

(2)EFCD,求證:BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂是一名健步運(yùn)動的愛好者,她用手機(jī)軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖(不完整).

(1)若樂樂這個月平均每天健步走的步數(shù)為1.32萬步,試求她走1.3萬步和1.5萬步的天數(shù);
(2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD,直線EFAB,CD分別相交于點(diǎn)E,F(xiàn).

(1)如圖1,若∠1=60°,求∠2,3的度數(shù).

(2)若點(diǎn)P是平面內(nèi)的一個動點(diǎn),連結(jié)PE,PF,探索∠EPF,PEB,PFD三個角之間的關(guān)系.

①當(dāng)點(diǎn)P在圖(2)的位置時,可得∠EPF=PEB+PFD請閱讀下面的解答過程并填空(理由或數(shù)學(xué)式)

解:如圖2,過點(diǎn)PMNAB

則∠EPM=PEB_______

ABCD(已知)MNAB(作圖)

MNCD_______

∴∠MPF=PFD _______

_____=PEB+PFD(等式的性質(zhì))

即:∠EPF=PEB+PFD

②拓展應(yīng)用,當(dāng)點(diǎn)P在圖3的位置時,此時∠EPF=80°,PEB=156°,則∠PFD=_____度.

③當(dāng)點(diǎn)P在圖4的位置時,請直接寫出∠EPF,PEB,PFD三個角之間關(guān)系_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,電動汽車的性能得到顯著提高,某市對市場上電動汽車的性能進(jìn)行隨機(jī)抽樣調(diào)查,現(xiàn)隨機(jī)抽取部分電動汽車,記錄其一次充電后行駛的里程數(shù),并將抽查數(shù)據(jù)繪制成如下頻數(shù)分布直方表和條形統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問題:

組別

行駛里程x(千米)

頻數(shù)(臺)

頻率

A

x<200

18

0.15

B

200≤x<210

36

a

C

210≤x<220

30

0.25

D

220≤x<230

b

0.20

E

x≥230

12

0.10

根據(jù)以上信息回答下列問題:
(1)填空:a= , b=;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該市市場上的電動汽車有2000臺,請你估計(jì)電動汽車一次充電后行駛的里程數(shù)在220千米及以上的臺數(shù).

查看答案和解析>>

同步練習(xí)冊答案