如圖,五邊形ABCDE中,AEBCEF平分∠AED,CF平分∠BCD,

若∠EDC=75°,求∠EFC的度數(shù).

 

 

DGBC,FHBC,分別交CF、DEG、H (輔助線方法不唯一) (1分)

AEBC,∴AEBCFH,∴∠AEF=EFH,∠BCF=CFH  (2分)

∴∠EFC=EFH+∠CFH=AEF+∠BCF

EF平分∠AEDCF平分∠BCD,  ∴∠EFC=AED+BCD,(3分)

AEBCDG,∴∠AED+EDG=180°,∠BCD+CDG=180°,(4分)

∴∠AED+BCD=3600(∠EDG+∠CDG) =3600EDC=360°75°=285°  (5分)

∴∠EFC=(∠AED+∠BCD)=142.5°   (6分)

解析:作DGBCFHBC,分別交CF、DEG、H,求出∠AEF=EFH,∠BCF=CFH,再求出∠AED+EDG=180°,∠BCD+CDG=180°,最后根據(jù)等量代換得∠EFC的度數(shù)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的長,寬分別為
3
2
和1,且OB=1,點E(
3
2
,2),連接AE,ED.
(1)求經(jīng)過A,E,D三點的拋物線的表達式;
(2)若以原點為位似中心,將五邊形AEDCB放大,使放大后的五邊形的邊長是原五邊形對應(yīng)邊長的3倍,請在下圖網(wǎng)格中畫出放大后的五邊形A′E′D′C′B′;
(3)經(jīng)過A′,E′,D′三點的拋物線能否由(1)中的拋物線平移得到?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,四邊形ABCD的內(nèi)角和為2×180°=360°,五邊形ABCDE的內(nèi)角和為3×180°=540°,…由此可見n邊形的內(nèi)角和為
(n-2)×180
度,外角和是
360
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,AB=6cm,AD=AC=5cm.點P由C出發(fā)沿CA方向勻速運動,速度為1cm/s;同時,線段EF由AB出發(fā)沿AD方向勻速運動,速度為1cm/s,交AC于Q,連接PE、PF.若設(shè)運動時間為t(s)(0<t<5).解答下列問題:精英家教網(wǎng)
(1)當t為何值時,PE∥CD?
(2)試判斷三角形PEF形狀,并請說明理由;
(3)當0<t<2.5時.
①在上述運動過程中,五邊形ABFPE的面積是否為定值?如果是,求出五邊形ABFPE的面積;如果不是,請說明理由;
②試求△PEQ的面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD的長、寬分別為3和2,OB=2,點E的坐標為(3,4)連接AE、ED.
(1)求經(jīng)過A、E、D三點的拋物線的解析式.
(2)以原點為位似中心,將五邊形ABCDE放大.
①若放大后的五邊形的邊長是原五邊形對應(yīng)邊長的2倍,請在網(wǎng)格中畫出放大后的五邊形A2B2C2D2E2,并直接寫出經(jīng)過A2、D2、E2三點的拋物線的解析式:
 
;
②若放大后的五邊形的邊長是原五邊形對應(yīng)邊長的k倍,請你直接寫出經(jīng)過Ak、Dk、Ek三點的拋物線的解析式:
 
(用含k的字母表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的內(nèi)角和為2×180°=360°,五邊形ABCDE的內(nèi)角和為3×180°=540°,…由此可見:
(1)六邊形的內(nèi)角和為
720
720
度;
(2)n邊形的內(nèi)角和為
(n-2)×180
(n-2)×180
度.

查看答案和解析>>

同步練習(xí)冊答案