【題目】如圖,△ABD內(nèi)接于圓O,BAD=60°,AC為圓O的直徑.ACBDP點(diǎn)且PB=2,PD=4,AD的長為( )

A. 2 B. 2 C. 2 D. 4

【答案】B

【解析】

連接DO并延長交⊙OE,連接BE,DE是⊙O的直徑,可得∠EBD=90°,由圓周角定理可得∠BED=BAD=60°,繼而得∠BDE=30°,可求得BD、DE長,進(jìn)而可得OA=OD=2,根據(jù)相似三角形的判定可得OPDBED,從而可得∠POD=EBD=90°,再根據(jù)勾股定理即可求得結(jié)論.

連接DO并延長交⊙OE,連接BE,

DE是⊙O的直徑,

∴∠EBD=90°,

∵∠BED=BAD=60°,

∴∠EDB=30°,

DE=2BE,

PB=2,PD=6,

BD=6,

BD2+BE2=DE2,

DE=4,BE=2,

OA=OD==2,

,,

,

又∵∠ODP=BDE,

∴△ODPBDE,

∴∠POD=EBD=90°,

AD=,

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)F,C是⊙O上兩點(diǎn),且,連接AC,AF,過點(diǎn)CCDAFAF延長線于點(diǎn)D,垂足為D.

(1)求證:CD是⊙O的切線;

(2)CD=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AC4BC3,AB5,AD為△ABC的角平分線,則CD的長度為( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C在線段AB上,(點(diǎn)C不與A、B重合),分別以AC、BC為邊在AB同側(cè)作等邊三角形ACD和等邊三角形BCE,連接AE、BD交于點(diǎn)P

1)觀察猜想:①線段AEBD的數(shù)量關(guān)系為_________;②APC的度數(shù)為_______________

2)數(shù)學(xué)思考:如圖2,當(dāng)點(diǎn)C在線段AB外時(shí),(1)中的結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明

3)拓展應(yīng)用:如圖3,分別以AC、BC為邊在AB同側(cè)作等腰直角三角形ACD和等腰直角三角形BCE,其中ACD=∠BCE=90°,CA=CD,CB=CE,連接AE=BD交于點(diǎn)P,則線段AEBD的關(guān)系為________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的對稱軸為x=2,且過點(diǎn)C(0,3)

(1)求此拋物線的解析式;

(2)證明:該拋物線恒在直線y=﹣2x+1上方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=30°,CD、CM分別是斜邊上的高和中線,那么下列結(jié)論中錯(cuò)誤的是(

A.CM=ACB.ACM=DCBC.AD=DMD.DB=4AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ABC=30°,點(diǎn)D在射線BC,且到A點(diǎn)的距離等于線段a的長.

(1)用圓規(guī)和直尺在圖中作出點(diǎn)D:(不寫作法,但須保留作圖痕跡,且說明結(jié)果

(2)如果AB=8,a=5.△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BC是⊙O的直徑,點(diǎn)DBC延長線上一點(diǎn),AB=AD,AE是⊙O的弦,∠AEC=30°.

(1)求證:直線AD是⊙O的切線;

(2)若AEBC,垂足為M,O的半徑為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題10分在長方形ABCD中,AB=5cmBC=6cm,點(diǎn)P從點(diǎn)A開始沿邊AB向終點(diǎn)B1cm/s的速度移動,與此同時(shí),點(diǎn)Q從點(diǎn)C開始沿邊CB向終點(diǎn)B以2cm/s的速度移動,如果P、Q分別從A、C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)B時(shí),兩點(diǎn)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為t秒.

1填空:BQ=______________cmPB=_______________cm用含t的代數(shù)式表示;

2當(dāng)t為何值時(shí),PQ的長度等于cm?

3是否存在t的值,使得五邊形APQCD的面積等于27?若存在,請求出此時(shí)t的值;若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案