【題目】如圖,RtACB中,∠C90°,AC5cm,BC2cm,點(diǎn)PB點(diǎn)出發(fā)以1cm/s的速度沿CB延長(zhǎng)線運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.以AP為斜邊在其上方構(gòu)造等腰直角APD.當(dāng)t1秒時(shí),則CD_____cm,當(dāng)D運(yùn)動(dòng)的路程為4cm時(shí),則P運(yùn)動(dòng)時(shí)間t_____秒.

【答案】4 8

【解析】

連接CD,作DFCBF,DECAE.首先證明AC+CBCD,延長(zhǎng)即可解決問(wèn)題;

解:連接CD,作DFCBF,DECAE

DADP,∠ADP90°,

∴∠DAP=∠DPA45°,

∵∠ACP+ADP180°,

A,CP,D四點(diǎn)共圓,

∴∠ACD=∠APD45°,

∴∠ACD=∠DCF,

DECADFCF,

DEDF,

∵∠EDF=∠ADP90°,

∴∠ADE=∠PDF,

∵∠DEA=∠DFP90°,

∴△DEA≌△DFPASA),

AEDF

CDCD,DEDF,

RtCDERtCDFHL),

CEDF

∴四邊形ECFD是正方形,

AC+CPEC+AE+CFPF2ECCD

t1s時(shí),AC5cm,CP3cm,

CD4cm),

當(dāng)t0時(shí),CD,

當(dāng)D運(yùn)動(dòng)的路程為4cm時(shí),CD4+

AC+CPCD,

5+CP15

CP10,

PB8t8.

故答案為:4;8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),AE∥CD,CE∥AB,連接DE交AC于點(diǎn)O.

(1)證明:四邊形ADCE為菱形;
(2)證明:DE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,∠A36°BD平分∠ABCAC于點(diǎn)D.求證:ADBC

證明:∵ABAC

∴∠ABC=∠C    

∵∠A36°

又∵∠A+ABC+C180°    

∴∠ABC   °

BD平分∠ABC

∴∠1=∠2   °

∴∠C=∠   72°

AD   ,BC      

ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)DAB上一點(diǎn),DFAC于點(diǎn)E,DE=FE,FCAB

1)說(shuō)明△ADE≌△CFE

2)判斷線段AB、CF、BD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(知識(shí)生成)我們已經(jīng)知道,通過(guò)計(jì)算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b2a2+2ab+b2,基于此,請(qǐng)解答下列問(wèn)題:

1)根據(jù)圖2,寫出一個(gè)代數(shù)恒等式:   

2)利用(1)中得到的結(jié)論,解決下面的問(wèn)題:若a+b+c10,ab+ac+bc35,則a2+b2+c2   

3)小明同學(xué)用圖3x張邊長(zhǎng)為a的正方形,y張邊長(zhǎng)為b的正方形,z張寬、長(zhǎng)分別為ab的長(zhǎng)方形紙片拼出一個(gè)面積為(2a+b)(a+2b)長(zhǎng)方形,則x+y+z   

(知識(shí)遷移)(4)事實(shí)上,通過(guò)計(jì)算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個(gè)邊長(zhǎng)為x的正方體挖去一個(gè)小長(zhǎng)方體后重新拼成一個(gè)新長(zhǎng)方體,請(qǐng)你根據(jù)圖4中圖形的變化關(guān)系,寫出一個(gè)代數(shù)恒等式:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知xy

1)求x2+xy+y2

2)若x的小數(shù)部分為a,y的整數(shù)部分為b,求ax+by的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解決下面的問(wèn)題

(一)如圖,大正方形是由兩個(gè)小正方形和兩個(gè)長(zhǎng)方形拼成的.

(1)請(qǐng)你用兩個(gè)不同形式的代數(shù)式表示這個(gè)大正方形的面積;

代數(shù)式

代數(shù)式

(2)由可得到關(guān)于的等式:

(二)從邊長(zhǎng)為的大正方形紙板中挖去一個(gè)邊長(zhǎng)為的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(圖甲),然后拼成一個(gè)平行四邊形(圖乙). 那么通過(guò)計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的乘法公式是 (用字母表示)

(3)計(jì)算 (直接寫結(jié)果)

用上面的卡片,(數(shù)量自定)畫出一個(gè)圖形,來(lái)驗(yàn)證上面的整式運(yùn)算(要求圖中有長(zhǎng)度和面積的標(biāo)記)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,它們的標(biāo)號(hào)分別為1,2,3,4,從中隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回,再?gòu)闹须S機(jī)摸出一個(gè)小球,求兩次摸出的小球的標(biāo)號(hào)之和大于4的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經(jīng)過(guò)點(diǎn)A、B、D,且∠A=60°,求此時(shí)菱形的邊長(zhǎng);
(2)若點(diǎn)P為AB上一點(diǎn),把菱形ABCD沿過(guò)點(diǎn)P的直線a折疊,使點(diǎn)D落在BC邊上,利用無(wú)刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說(shuō)明作法和理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案