【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,

①寫出A、B、C的坐標(biāo).

②以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo)

【答案】①A(1,﹣4),B(5,﹣4),C(4,﹣1);②畫圖見解析,A1(﹣1,4),B1(﹣5,4),C1(﹣4,1).

【解析】試題分析:關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反.

根據(jù)各點所在的象限,對應(yīng)的橫坐標(biāo)、縱坐標(biāo),分別寫出點的坐標(biāo);

首先根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點:兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反得到ABC的對稱點坐標(biāo),再順次連接即可.

解:①A1﹣4),B5﹣4),C4,﹣1);

②A1﹣1,4),B1﹣5,4),C1﹣4,1),如圖所示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃組織師生參加哈爾濱冰雪節(jié),感受冰雪藝術(shù)的魅力.出租公司現(xiàn)有甲、乙兩種型號的客車可供租用,且每輛乙型客車的租金比每輛甲型客車少60元.若該校租用3輛甲種客車,4輛乙種客車,則需付租金1720元.

(1)該出租公司每輛甲、乙兩型客車的租金各為多少元?

(2)若學(xué)校計劃租用6輛客車,租車的總租金不超過1560元,那么最多租用甲型客車多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)如圖,在四邊形ABCD中,ADBC,點EBC的延長線上,CE=BC,連接AE,交CD邊于點F,且CF=DF.(1)求證:AD=BC;(2)連接BD、DE,若BDDE,求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點E在邊CD上,且CD3DE,將△ADE沿AE對折至△AEF,延長EF交邊BC于點G,連結(jié)AG,CF,則下列結(jié)論:①△ABG≌△AFGBGCG;AGCF;SEGCSAFESFGC;其中正確的結(jié)論有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△AOB繞著一點旋轉(zhuǎn)到△AOB′的位置,可以看到點A旋轉(zhuǎn)到點A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠AOB′,這些都是互相對應(yīng)的點、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點B的對應(yīng)點是點______;線段OB的對應(yīng)線段是線段_____;∠A的對應(yīng)角是______;旋轉(zhuǎn)中心是點_______;旋轉(zhuǎn)的角度是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,三角形的三個頂點的位置如圖,為三角形內(nèi)一點,的坐標(biāo)為

1)平移三角形,使點與原點重合,請畫出平移后的三角形

2)直接寫出的對應(yīng)點的坐標(biāo);并寫出平移的規(guī)律.

, );

, );

, );

3)求三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小強上山游玩,小穎乘坐纜車,小強步行,兩人相約在山頂?shù)睦|車終點會和,已知小強行走到纜車終點的路程是纜車到山頂?shù)木路長的倍,小穎在小強出發(fā)后分才乘上纜車,纜車的平均速度為米/分,若圖中的折線表示小強在整個行走過程中的路程(米)與出發(fā)時間(分)之間的關(guān)系的圖像,請回答下列問題.

1)小強行走的總路程是 米,他途中休息了 分;

2)分別求出小強在休息前和休息后所走的兩段路程的速度;

3)當(dāng)小穎到達纜車終點時,小強離纜車終點的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC,ACD,E兩點,過點D作⊙O的切線,交AC于點F,交AB的延長線于點G.

(1)求證:EF=CF;

(2)若cosABC=,AB=10,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)值相同時,我們把正比例函數(shù)與反比例函數(shù) 叫做關(guān)聯(lián)函數(shù),可以通過圖象研究關(guān)聯(lián)函數(shù)的性質(zhì).小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,先以為例對關(guān)聯(lián)函數(shù)進行了探究.下面是小明的探究過程,請你將它補充完整.

1)如圖,在同一坐標(biāo)系中畫出這兩個函數(shù)的圖象.設(shè)這兩個函數(shù)圖象的交點分別為,,則點 的坐標(biāo)為,點的坐標(biāo)為_______

2)點是函數(shù)在第一象限內(nèi)的圖象上一個動點(點不與點重合),設(shè)點的坐標(biāo)為,其中

①結(jié)論:作直線,分別與軸交于點,,則在點運動的過程中,總有

證明:設(shè)直線的解析式為,將點和點的坐標(biāo)代入,得

解得 則直線的解析式為

,可得,則點的坐標(biāo)為

同理可求,直線的解析式為,點的坐標(biāo)為________

請你繼續(xù)完成證明的后續(xù)過程:

②結(jié)論:設(shè)的面積為,則的函數(shù).請你直接寫出的函數(shù)表達式.

查看答案和解析>>

同步練習(xí)冊答案