【題目】問(wèn)題背景
在數(shù)學(xué)活動(dòng)課上,張老師要求同學(xué)們拿兩張大小不同的矩形紙片進(jìn)行旋轉(zhuǎn)變換探究活動(dòng).如圖 1,在矩形紙片ABCD 和矩形紙片EFGH中,AB=1,AD=2,且FE>AD,FG>AB,點(diǎn)E 是 AD 的中點(diǎn),矩形紙片 EFGH 以點(diǎn)E 為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中會(huì)產(chǎn)生怎樣的數(shù)量關(guān)系,提出恰當(dāng)?shù)臄?shù)學(xué)問(wèn)題并加以解決.
解決問(wèn)題
下面是三個(gè)學(xué)習(xí)小組提出的數(shù)學(xué)問(wèn)題,請(qǐng)你解決這些問(wèn)題.
(1)“奮進(jìn)”小組提出的問(wèn)題是:如圖 1,當(dāng) EF 與 AB 相交于點(diǎn) M,EH 與 BC 相交于點(diǎn) N 時(shí),求證:EM=EN.
(2)“雄鷹”小組提出的問(wèn)題是:在(1)的條件下,當(dāng) AM=CN 時(shí),AM 與 BM 有怎樣的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.
(3)“創(chuàng)新”小組提出的問(wèn)題是:若矩形 EFGH 繼續(xù)以點(diǎn) E 為旋轉(zhuǎn)中心進(jìn)行逆時(shí)針旋轉(zhuǎn),當(dāng) 時(shí),請(qǐng)你在圖 2 中畫(huà)出旋轉(zhuǎn)后的示意圖,并求出此時(shí) EF 將邊 BC 分成的兩條線段的長(zhǎng)度.
【答案】(1)證明見(jiàn)解析;(2)AM=BN;(3)EF 將邊 BC 分成的兩條線段的長(zhǎng)度為 .
【解析】試題分析:(1)過(guò)點(diǎn) E 作 ,垂足為點(diǎn)P,根據(jù)已知條件證出PE=AE,再證得∠PEN=∠AEM,進(jìn)而得到△PEN≌△AEM,即可證得結(jié)論;(2)易證PN=CN= PC,進(jìn)而求出PN=CN=,再判斷出AM=PN=,即可得出BM=,從而證得結(jié)論;(3)在Rt△PEM中,求出PM的長(zhǎng),再用線段的和差即可得出結(jié)論.
試題解析:
(1) 如圖1,過(guò)點(diǎn) E 作 ,垂足為點(diǎn) P,
則四邊形 ABPE 是矩形,∴PE=AB=1, ,
∵ 點(diǎn) E 是 AD 的中點(diǎn),∴ ,∴PE=AE,
∵ ,∴ ,
∵PE=AE, ,∴,∴EM=EN.
(2) 由(1)知, ,∴AM=PN,
∵AM=CN,∴PN=CN=PC,
∵ 四邊形 EPCD 是矩形,∴PC=DE=1,PN=CN=,
∴AM=PN=,BM=AB-AM=,∴AM=BN.
(3)如圖2,當(dāng)∠AEF=60°時(shí),
設(shè)EF與BC交于M,EH與CD交于N,過(guò)點(diǎn)E作EP⊥BC于P,連接EC,
由(1)知,CP=EP=1,AD∥BC,
∴∠EMP=∠AEF=60°,
在Rt△PEM中,PM=,
∴BM=BP﹣PM=1﹣,CM=PC+PM=1+,
∴EF將邊BC分成的兩條線段的長(zhǎng)度為1﹣,1+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1在平面直角坐標(biāo)系中.等腰Rt△OAB的斜邊OA在x軸上.P為線段OB上﹣動(dòng)點(diǎn)(不與O,B重合).過(guò)P點(diǎn)向x軸作垂線.垂足為C.以PC為邊在PC的右側(cè)作正方形PCDM.OP=t,OA=3.設(shè)過(guò)O,M兩點(diǎn)的拋物線為y=ax2+bx.其頂點(diǎn)N(m,n)
(1)寫(xiě)出t的取值范圍 ,寫(xiě)出M的坐標(biāo):( , );
(2)用含a,t的代數(shù)式表示b;
(3)當(dāng)拋物線開(kāi)向下,且點(diǎn)M恰好運(yùn)動(dòng)到AB邊上時(shí)(如圖2)
①求t的值;
②若N在△OAB的內(nèi)部及邊上,試求a及m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式﹣﹣利用函數(shù)圖象研究其性質(zhì)一運(yùn)用函數(shù)解決問(wèn)題“的學(xué)習(xí)過(guò)程.在畫(huà)函數(shù)圖象時(shí),我們通過(guò)描點(diǎn)或平移的方法畫(huà)出了所學(xué)的函數(shù)圖象.同時(shí),我們也學(xué)習(xí)了絕對(duì)值的意義|a|=.
結(jié)合上面經(jīng)歷的學(xué)習(xí)過(guò)程,現(xiàn)在來(lái)解決下面的問(wèn)題:在函數(shù)y=|kx﹣1|+b中,當(dāng)x=1時(shí),y=3,當(dāng)x=0時(shí),y=4.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中,請(qǐng)用你喜歡的方法畫(huà)出這個(gè)函數(shù)的圖象;
(3)已知函數(shù)y=的圖象如圖所示,結(jié)合你所畫(huà)的函數(shù)圖象,直接寫(xiě)出不等式|kx﹣1|+b≥的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為促進(jìn)課堂教學(xué),提高教學(xué)質(zhì)量,對(duì)七年級(jí)學(xué)生進(jìn)行了一次“你最喜歡的課堂教學(xué)方式”的問(wèn)卷調(diào)查.根據(jù)收回的問(wèn)卷,學(xué)校繪制了如下圖表,請(qǐng)你根據(jù)圖表中提供的信息,解答下列問(wèn)題.
編號(hào) | 教學(xué)方式 | 最喜歡的頻數(shù) | 頻率 |
1 | 教師講,學(xué)生聽(tīng) | 20 | 0.10 |
2 | 教師提出問(wèn)題,學(xué)生探索思考 | ||
3 | 學(xué)生自行閱讀教材,獨(dú)立思考 | 30 | |
4 | 分組討論,解決問(wèn)題 | 0.25 |
(1)收回的問(wèn)卷份數(shù)為 ,把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中編號(hào)1與編號(hào)4的圓心角分別是多少度?
(3)你最喜歡以上哪一種教學(xué)方式,請(qǐng)?zhí)岢瞿愕慕ㄗh,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AE⊥BD于E,CF⊥BD于F,AB=CD,AE=CF,則圖中全等三角形共有( )
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是 ( )
A. 在 Rt△ABC中,若tanA=,則a=4,b=3
B. 在 Rt△ABC中,∠C=90°,則tanA+tanB=1
C. 在 Rt△ABC 中,∠C=90°,若a=3,b=4,則tanA=
D. tan75°=tan(45°+30°)=tan45°+tan30°=1+
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究活動(dòng))
如圖1:已知直線a與b平行,直線c與直線a、b分別相交于點(diǎn)A. B,直線d與直線a、b分別相交于點(diǎn)C. D,點(diǎn)P在直線c上移動(dòng),連接PC、PD.探究∠CPD、∠PCA、∠PDB之間的數(shù)量關(guān)系.
(探究過(guò)程)
(1)當(dāng)點(diǎn)P在點(diǎn)A. B之間移動(dòng)時(shí),如圖2,寫(xiě)出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說(shuō)明理由.
(2)當(dāng)點(diǎn)P在A. B兩點(diǎn)外移動(dòng)時(shí),如圖3,寫(xiě)出∠CPD、∠PCA、∠PDB之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、兩地相距50千米,甲于某日下午1時(shí)騎自行車(chē)從地出發(fā)駛往地,乙也在同日下午騎摩托車(chē)按同路從地出發(fā)駛往地,如圖所示,圖中的折線和線段分別表示甲、乙所行駛的路程(千米)與該日下午時(shí)間(時(shí))之間的關(guān)系.根據(jù)圖象回答下列問(wèn)題:
(1)甲出發(fā)___________小時(shí)后,乙才開(kāi)始出發(fā);乙的速度為_(kāi)_________千米/時(shí);甲騎自行車(chē)在全程的平均速度為_(kāi)_________千米/時(shí);
(2)乙出發(fā)多少小時(shí)后就追上了甲?寫(xiě)出解答過(guò)程;
(3)請(qǐng)你自己再提出一個(gè)符合題意的問(wèn)題情境,并解答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點(diǎn)D、C,直線AB與軸交于點(diǎn),與直線CD交于點(diǎn).
(1)求直線AB的解析式;
(2)點(diǎn)E是射線CD上一動(dòng)點(diǎn),過(guò)點(diǎn)E作軸,交直線AB于點(diǎn)F,若以、、、為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出點(diǎn)E的坐標(biāo);
(3)設(shè)P是射線CD上一動(dòng)點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以B、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)Q的個(gè)數(shù)及其中一個(gè)點(diǎn)Q的坐標(biāo);否則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com