【題目】如圖1,二次函數(shù)y=ax2+bx+2的圖象交x軸于點A(﹣2,0),B(3,0),交y軸于點C,P是第一象限內(nèi)二次函數(shù)圖象上的動點.
(1)求這個二次函數(shù)的表達式;
(2)連接PB,PC,PO,若S△POC=S△PBC,求點P的坐標;
(3)如圖2.連接AP,交直線BC于點D,當點D是線段BC的三等分點時,求tan∠ADC的值.
【答案】(1);(2)P(1,2);(3).
【解析】
(1)將A(﹣2,0),B(3,0)代入函數(shù)表達式,即可求解;
(2)S△PBC=S△PQC+S△PQB,S△POC=,而S△POC=S△PBC,則,即可求解;
(3)證明△EAF∽△ADG、△DBG∽△CBO,再分、兩種情況,分別求解即可.
(1)將A(﹣2,0),B(3,0)代入函數(shù)表達式,得,解得,
∴所求二次函數(shù)的表達式為;
(2)過點P作PQ∥y軸交BC于點Q,
將x=0代入中,得y=2.
∴C(0,2).
設(shè)直線BC對對應(yīng)的函數(shù)表達式為y=kx+c,
將B(3,0),C(0,2)代入表達式中,
得,解得,
∴.
設(shè)P(x,),Q(x,),
∴PQ=yP﹣yQ=﹣()=.
∴S△PBC=S△PQC+S△PQB===,
而S△POC==.
∵S△POC=S△PBC,
∴.
∴x1=0(舍去),x2=1.
∴P(1,2);
(3)過點A作AE⊥AP交直線BC于點E,過點D作DG⊥x軸于點G,過點E作EF⊥x軸于點F,
∴∠EFA=∠EAD=∠AGD=90°.
∴∠FEA+∠EAF=90°,∠DAG+∠EAF=90°.
∴∠FEA=∠DAG.
∴△EAF∽△ADG.
∴.
∵∠COB=∠DGB=90°,∠CBO=∠CBO,
∴△DBG∽△CBO.
∴.
設(shè)E(x,),則AF=﹣2﹣x,EF=.
∵點D是線段BC的三等分點,
∴或.
當時,點D(2,).
∴AG=4,DG=.
∴.
∴.
∴.
當時,點D(1,).
∴AG=3,DG=.
∴.
∴.
∴tan∠ADC==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐:再探平行四邊形的性質(zhì)
問題情境:
學(xué)完平行四邊形的有關(guān)知識后,同學(xué)們開展了再探平行四邊形性質(zhì)的數(shù)學(xué)活動,以下是“希望小組”得到的一個性質(zhì):
如圖1,已知平行四邊形中,,于點,垂直于點,則.
問題解決:
(1)如圖2,當時,還成立嗎?證明你發(fā)現(xiàn)的結(jié)論;
(2)如圖2,連接和,若.求的度數(shù);
(3)如圖3,若,,點是射線上一點,且.則_________.(用含的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,中,,.動點在的邊上按的路線勻速移動,當點到達點時停止移動;動點以的速度在的邊上按的路線勻速移動,當點到達點時停止移動.已知點、點同時開始移動,同時停止移動(即同時到達各自的終止位置).設(shè)動點移動的時間為,的面積為,與的函數(shù)關(guān)系如圖②所示.
(1)圖①中 ,圖②中 ;
(2)求與的函數(shù)表達式;
(3)當為何值時,為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次臺風(fēng)來襲時,一棵筆直大樹樹干AB(假定樹干AB垂直于水平地面)被刮傾斜7°(即∠BAB′=7°)后折斷倒在地上,樹的頂部恰好接觸到地面D處,測得∠CDA=37°,AD=5米,求這棵大樹AB的高度.(結(jié)果保留根號)(參考數(shù)據(jù):sin37≈0.6,cos37=0.8,tan37≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,點、分別為邊、上的點,且,連接、交于點,連接交于點,則下列結(jié)論:①;②;③;④;其中正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于點A,B,與y軸交于點C.點P是該函數(shù)圖象上的動點,且位于第一象限,設(shè)點P的橫坐標為x.
(1)寫出線段AC, BC的長度:AC= ,BC= ;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達式;
(3)過點P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請求出的值;若不存在,請說明理由,并求出的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com