(10分)如圖直角坐標(biāo)系中,已知A(-4,0),B(0,3),點M在線段AB上.

【小題1】(1)如圖1,如果點M是線段AB的中點,且⊙M的半徑為2,試判斷直線OB與⊙M的位置關(guān)系,并說明理由;
【小題2】(2)如圖2,⊙Mx軸、y軸都相切,切點分別是點EF,試求出點M的坐標(biāo).



【小題1】(1)直線OB與⊙M相切. ……………………1分
理由:
設(shè)線段OB的中點為D,連結(jié)MD.……………………2分
因為點M是線段AB的中點,所以MDAO,MD=2.
所以MDOB,點D在⊙M上.……………………4分
又因為點D在直線OB上,……………………5分
所以直線OB與⊙M相切.
【小題2】(2) 解法一:可求得過點A、B的一次函數(shù)關(guān)系式是yx+3,………………7分
因為⊙Mx軸、y軸都相切,
所以點Mx軸、y軸的距離都相等.……………………8分
設(shè)M(a,-a) (-4<a<0) .
xa,y=-a代入yx+3,
得-aa+3,得a=-.……………………9分
所以點M的坐標(biāo)為(-,).……………………10分
解法二:連接ME、MF.設(shè)MEx(x>0),則OEMFx,……………………6分
AEx,所以AOx.………………8分
因為AO=4,所以,x=4.
解得x=.……………………9分
所以點M的坐標(biāo)為(-,).……………………10分解析:
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點.點Ax軸正半軸上.點E是邊AB上的—個動點(不與點A、B重合),過點E的反比例函數(shù)的圖象與邊BC交于點F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當(dāng)點E運動到什么位置時,四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省荊門市東寶區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)如圖,將—矩形OABC放在直角坐際系中,O為坐標(biāo)原點.點Ax軸正半軸上.點E是邊AB上的—個動點(不與點AB重合),過點E的反比例函數(shù)的圖象與邊BC交于點F.

(1)若△OAE、△OCF的而積分別為.且,求k的值.

(2)若OA=2,0C=4,問當(dāng)點E運動到什么位置時,四邊形OAEF的面積最大,其最大值為多少?

 

查看答案和解析>>

同步練習(xí)冊答案