(2012•西城區(qū)一模)已知:如圖1,矩形ABCD中,AB=6,BC=8,E、F、G、H分別是AB、BC、CD、DA四條邊上的點(且不與各邊頂點重合),設m=EF+FG+GH+HE,探索m的取值范圍.
(1)如圖2,當E、F、G、H分別是AB、BC、CD、DA四邊中點時,m=
20
20

(2)為了解決這個問題,小貝同學采用軸對稱的方法,如圖3,將整個圖形以CD為對稱軸翻折,接著再連續(xù)翻折兩次,
從而找到解決問題的途徑,求得m的取值范圍.①請在圖3中補全小貝同學翻折后的圖形;②m的取值范圍是
20≤m<28
20≤m<28

分析:(1)利用勾股定理求出矩形對角線的長度,再利用三角形中位線的性質得出EH=
1
2
BD,EF=
1
2
AC,F(xiàn)G=
1
2
BD,HG=
1
2
AC,進而求出即可;
(2)①利用軸對稱圖形的性質得出答案即可;
②利用兩點之間線段最短以及三角形三邊關系得出m的取值范圍即可.
解答:解:(1)如圖2,連接AC,BD,
∵在矩形ABCD中,AB=6,BC=8,
∴AC=BD=
62+82
=10,
∵E、F、G、H分別是AB、BC、CD、DA四邊中點,
∴EH,EF,F(xiàn)G,HG,分別是△ABD,△ABC,△BCD,△ACD的中位線,
∴EH=
1
2
BD,EF=
1
2
AC,F(xiàn)G=
1
2
BD,HG=
1
2
AC,
∴m=EF+FG+GH+HE=AC+BD=10+10=20;   
                     
(2)①如圖3所示(虛線可以不畫),


②由圖形可知,四邊形的周長即折線HM的長,由兩點之間線段最短可知,折線HM≥20,即周長不小于20;                  
又由題可知,四邊形周長小于矩形ABCD的周長,即周長小于28,
故20≤m<28.
故答案為:20;20≤m<28.
點評:此題主要考查了翻折變換的性質以及矩形的性質和三角形中位線的性質等知識,利用翻折變換的性質得出折線HM與四邊形的周長關系是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)把(x-1)2-9因式分解的結果是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)(1)解不等式:x>
1
2
x+1
;            
(2)解方程組
x-2y=0
3x+2y=8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)如圖,在△ABC中,點D是BC上一點,∠B=∠DAC=45°.
(1)如圖1,當∠C=45°時,請寫出圖中一對相等的線段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如圖2,若BD=2,BA=
3
,求AD的長及△ACD的面積.

查看答案和解析>>

同步練習冊答案