【題目】由8時15分到8時40分,時鐘的分針旋轉(zhuǎn)的角度為

【答案】150°
【解析】由分針60分鐘旋轉(zhuǎn)360°,得
分針1分鐘旋轉(zhuǎn)360°÷60等于6°,
分針旋轉(zhuǎn)了40-15等于25分鐘,
8時15分到8時40分,時鐘的分針旋轉(zhuǎn)的角度為6°×25等于150°,
所以答案是:150°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用不等式表示:“2與x的和的3倍是負數(shù)”為_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】電線桿的支架做成三角形的,是利用三角形的_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】時鐘的時針在不停地轉(zhuǎn)動,從上午9點到上午10點,時針旋轉(zhuǎn)的旋轉(zhuǎn)角為( 。
A.10°
B.20°
C.30°
D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=75°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△AB’C’的位置,使CC’//AB,求∠BAB’的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法屬于不可能事件的是(  )
A.四邊形的內(nèi)角和為360°
B.梯形的對角線不相等
C.內(nèi)錯角相等
D.存在實數(shù)x滿足x2+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,MBC邊(不含端點B、C)上任意一點,PBC延長線上一點,N∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME

正方形ABCD中,∠B=∠BCD=90°,AB=BC

∴∠NMC=180°—∠AMN—∠AMB

=180°—∠B—∠AMB

=∠MAB=∠MAE

(下面請你完成余下的證明過程)

2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為預防甲型H1N1流感,某校對教室噴灑藥物進行消毒.已知噴灑藥物時每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.

(1)求噴灑藥物時和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;

(2)若空氣中每立方米的含藥量低于2毫克學生方可進教室,問消毒開始后至少要經(jīng)過多少分鐘,學生才能回到教室?

(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時間不低于10分鐘時,才能殺滅流感病毒,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。
A.x2+x2=x4
B.(a﹣b)2=a2﹣b2
C.(﹣a23=﹣a6
D.3a22a3=6a6

查看答案和解析>>

同步練習冊答案