【題目】我們知道:分式和分數(shù)有著很多的相似點.如類比分數(shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分數(shù)的運算法則,我們得到了分式的運算法則,等等.小學里,把分子比分母小的分數(shù)叫做真分數(shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化作整式與真分式的和的形式.
如:;
(1)下列分式中,屬于真分式的是__________(填序號);
①②③④
(2)將假分式化為整式與真分式的和的形式:__________;若假分式的值為正整數(shù),則整數(shù)的值為__________;
(3)請你寫出假分式化成整式與真分式的和的形式的完整過程.
科目:初中數(shù)學 來源: 題型:
【題目】已知:在等邊△ABC中, AB=, D,E分別是AB,BC的中點(如圖).若將△BDE繞點B逆時針旋轉(zhuǎn),得到△BD1E1,設旋轉(zhuǎn)角為α(0°<α<180°),記射線CE1與AD1的交點為P.點P到BC所在直線的距離的最大值為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(1﹣2k)x2﹣2x﹣1=0
(1)若此方程為一元一次方程,求k的值.
(2)若此方程為一元二次方程,且有實數(shù)根,試求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△DEF都是等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合。將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,射線EF與線段AB相交于點G,與射線CA相交于點Q.
(1)求證:△BPE∽△CEQ;
(2)求證:DP平分∠BPQ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系___;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】出租車司機張師傅某天上午營運全是在東西向的長江路上進行的,如果向東為正,向西為負,這天上午他行車里程(單位:km)如下:
.
⑴.最后一名乘客送到目的地,出租車在東面還是西面?在多少千米處?
⑵.請你幫張師傅算一下,這天上午他一共行駛了多少里程?
⑶.若每千米耗油0.1L,則這天上午張師傅一共用了多少升油?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油最多可行駛的公里數(shù),如圖描述了A、B兩輛汽車在不同速度下的燃油效率情況.
根據(jù)圖中信息,下面4個推斷中,合理的是( 。
①消耗1升汽油,A車最多可行駛5千米;
②B車以40千米/小時的速度行駛1小時,最多消耗4升汽油;
③對于A車而言,行駛速度越快越省油;
④某城市機動車最高限速80千米/小時,相同條件下,在該市駕駛B車比駕駛A車更省油.
A.①④B.②③C.②④D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個圖形中有全等三角形的對數(shù)是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于A(-4,0),B(1,0),交y軸于C點,且OC=2OB.
(1)求拋物線的解析式;
(2)在直線BC上找點D,使△ABD為以AB為腰的等腰三角形,求D點的坐標;
(3)在拋物線上是否存在異于B的點P,過P點作PQ⊥AC于Q,使△APQ與△ABC相似?若存在,請求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com