【題目】如圖,在邊長為1的正方形中,對角線,相交于O.點.H為邊上的點,過點H作,交線段于點E,連接交于點F,交于點G.若,則的長為__________.
【答案】
【解析】
設(shè)CH=x,證明△CHE∽△DCH,可得,由此構(gòu)建方程即可解決問題;
解:設(shè)CH=x, ∵四邊形ABCD是正方形,AB=1,
∴BH=1-x,∠DBC=∠BDC=∠ACB=45°,
∵EH⊥BC, ∴∠BEH=∠EBH=45°,
∴EH=BH=1-x,
∵四邊形ABCD是正方形,
∴AC⊥BD,OD=OC,
∴∠DOG=∠COE=90°,
∴△DOG≌△COE,
∴∠ODG=∠OCE,
∴∠BDC-∠ODG=∠ACB-∠OCE,
∴∠HDC=∠ECH,
∵EH⊥BC,
∴∠EHC=∠HCD=90°,
∴△CHE∽△DCH,
,
∴
∴
解得 或(舍棄),
∴HC=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線與軸交于,兩點,頂點為.
(1)當(dāng),時,求線段的長度;
(2)當(dāng),若點到軸的距離與點到軸的距離相等,求該拋物線的解析式;
(3)若,當(dāng)時,的最大值為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點、點在半徑為的上,為上一動點,為軸上一定點,且當(dāng)點從點逆時針運(yùn)動到點時,點的運(yùn)動路徑長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市擬于中秋節(jié)前50天里銷售某品牌月餅,其進(jìn)價為18元/kg.設(shè)第x天的銷售價格為y(元/kg)銷售量為m(kg).該超市根據(jù)以往的銷售經(jīng)驗得出以下的銷售規(guī)律:①y與x滿足一次函數(shù)關(guān)系,且當(dāng)x=32時,y=39;x=40時,y=35.②m與x的關(guān)系為m=5x+50.
(1)y與x的關(guān)系式為______;
(2)當(dāng)34≤x≤50時,求第幾天的銷售利潤W(元)最大?最大利潤為多少?
(3)若在當(dāng)天銷售價格的基礎(chǔ)上漲a元/kg(0<a<10),在第31天至42天銷售利潤最大值為6250元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,已知.O是上一點,切于A點.
(Ⅰ)如圖①,若的半徑為6,求線段的長;
(Ⅱ)如圖②,交于E點,過E點作交于點D,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,點O是對角線AC的中點,過點O作AC的垂線,分別交AD、BC于點E、F,連接AF、CE.試判斷四邊形AECF的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°,得到△CBD,若點B的坐標(biāo)為(4,0),則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩張矩形紙片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把紙片ABCD交叉疊放在紙片EFGH上,使重疊部分為平行四邊形,且點D與點G重合.當(dāng)兩張紙片交叉所成的角α最小時,sinα等于( 。
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com