【題目】如圖,在ABC中,AC=BC,C=90°ADABC的角平分線,DEAB,垂足為E

1)已知CD=4cm,求AC的長(zhǎng);

2)求證:AB=AC+CD

【答案】(1;(2)證明見試題解析

【解析】

試題分析:(1)由角平分線的性質(zhì)可知CD=DE=4cm,由于C=90°,故B=BDE=45°,BDE是等腰直角三角形,由勾股定理得可得BD,AC的值;

2)由(1)可知:ACD≌△AEDAC=AE,BE=DE=CD,故AB=AE+BE=AC+CD

試題解析:(1ADABC的角平分線,DCAC,DEABDE=CD=4cm,又AC=BC∴∠B=BAC,又∵∠C=90°,∴∠B=BDE=45°,BE=DE=4cm

在等腰直角三角形BDE中,由勾股定理得,BD=cm,AC=BC=CD+BD=cm).

2ADABC的角平分線,DCAC,DEAB∴∠ADE=ADC,AC=AE,又BE=DE=CD,AB=AE+BE=AC+CD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開展感動(dòng)中國2014年度人物先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化商店計(jì)劃同時(shí)購進(jìn)AB兩種儀器,若購進(jìn)A種儀器2臺(tái)和B種儀器3臺(tái),共需要資金1700元;若購進(jìn)A種儀器3臺(tái),B種儀器1臺(tái),共需要資金1500元.

1)求A、B兩種型號(hào)的儀器每臺(tái)進(jìn)價(jià)各是多少元?

2)已知A種儀器的售價(jià)為760元/臺(tái),B種儀器的售價(jià)為540元/臺(tái).該經(jīng)銷商決定在成本不超過30000元的前提下購進(jìn)AB兩種儀器,若B種儀器是A種儀器的3倍還多10臺(tái),那么要使總利潤(rùn)不少于21600元,該經(jīng)銷商有哪幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,3),B(0,1),C(2,1).若將三角形ABC向左平移3個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到三角形A′B′C′.

(1)寫出三角形A′B′C′各頂點(diǎn)的坐標(biāo);
(2)畫出三角形ABC和三角形A′B′C′;
(3)求出三角形A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊△ABC,點(diǎn)D和點(diǎn)B關(guān)于直線AC軸對(duì)稱.點(diǎn)M(不同于點(diǎn)A和點(diǎn)C)在射線CA上,線段DM的垂直平分線交直線BC的于N,

1)如圖,過點(diǎn)DDE⊥BC,交BC的延長(zhǎng)線于E,若CE5,BC的長(zhǎng);

2)如圖,若點(diǎn)M在線段AC上,求證:△DMN為等邊三角形;

3)連接CDBM,若,直接寫出

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定sin(-x)=-sinx,cos(-x)=cosx,sinx+y)=sinx·cosycosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào))

cos(-60°)=—cos60°=

sin75°sin30°+45°=sin30°·cos45°+cos30°·sin45°=

③sin2xsinx+x)=sinx·cosx+cosx·sinx2sinx·cosx

④sinxy)=sinx·cosycosx·siny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題

已知ACB是△ABC的一個(gè)內(nèi)角

求作APB=∠ACB

小路的作法如下

老師說“小路的作法正確.”

請(qǐng)回答:(1點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC的依據(jù)是_____;

2APB=∠ACB的依據(jù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,六邊形 ABCDEF 中,∠A+B+C=D+E+F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.

(1)根據(jù)圖形寫出你的猜想: ;

(2)請(qǐng)證明你在(1)中寫出的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019516日,第十五屆文博會(huì)在深圳拉開帷幕,周末,小明騎共享單車從家里出發(fā)去分會(huì)館參觀,途中突然發(fā)現(xiàn)鑰匙不見了,于是原路折返,在剛才等紅綠燈的路口找到了鑰匙,便繼續(xù)前往分會(huì)館,設(shè)小明從家里出發(fā)到分會(huì)場(chǎng)所用的時(shí)間為x(分鐘),離家的距離為y(米),且xy的關(guān)系示意圖如圖所示,請(qǐng)根據(jù)圖中提供的信息回答下列問題:

1)圖中自變量是   .因變量是   

2)小明等待紅綠燈花了   分鐘.

3)小明的家距離分會(huì)館   

4)小明在   時(shí)間段的騎行速度最快,最快速度是   /分鐘.

查看答案和解析>>

同步練習(xí)冊(cè)答案