【題目】已知一次函數(shù)yax+b過一,二,四象限,且過(6,0),則關于二次函數(shù)yax2+bx+1的以下說法:①圖象與x軸有兩個交點;②a0b0;③當x3時函數(shù)有最小值;④若存在一個實數(shù)m,當x≤m時,yx的增大而增大,則m≤3.其中正確的是( )

A. ①②B. ①②③C. ①②④D. ②③④

【答案】C

【解析】

根據(jù)題意可以判斷a、b的正負,從而可以判斷各個小題中的結論是否成立,從而可以解答本題.

解:∵一次函數(shù)y=ax+b過一,二,四象限,且過(6,0),
∴a<0,b>0,0=6a+b,故②正確,
∴b=-6a,
∴y=ax2+bx+1a<0,b>0,
∴△=b2-4a×1=36a2-4a=4a(9a-1)>0,
∴圖象與x軸有兩個交點,故①正確,
y=ax2+bx+1中,當x=-=-=3時,取得最大值,故③錯誤,
∴當x>3時,yx的增大而減小,當x<3時,yx的增大而增大,
∴若存在一個實數(shù)m,當x≤m時,yx的增大而增大,則m≤3,故④正確,
故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“金山銀山,不如綠水青山”.鄂爾多斯市某旗區(qū)不斷推進“森林城市”建設,今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:

1)扇形統(tǒng)計圖中松樹所對的圓心角為   度,并補全條形統(tǒng)計圖.

2)該旗區(qū)今年共種樹32萬棵,成活了約多少棵?

3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,BC,D表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c(a≠0)的圖象經(jīng)過點(1,2),且與x軸交點的橫坐標分別為x1,x2,其中﹣2x1<﹣1,0x21,下列結論:①4a2b+c0;②2ab0;③a0;④b2+8a4ac,其中正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,圓心為P(x,y)的動圓經(jīng)過點A(1,2)且與x軸相切于點B.

(1)當x=2時,求⊙P的半徑;

(2)求y關于x的函數(shù)解析式,請判斷此函數(shù)圖象的形狀,并在圖②中畫出此函數(shù)的圖象;

(3)請類比圓的定義(圖可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數(shù)圖象進行定義:此函數(shù)圖象可以看成是到   的距離等于到   的距離的所有點的集合.

(4)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點C、D,其中交點D(m,n)在點C的右側,請利用圖②,求cosAPD的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AEBD,CFBD,E,F分別為垂足.

1)求證:四邊形AECF是平行四邊形;

2)如果AE=3,EF=4,求AF、EC所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綠色生態(tài)農(nóng)場生產(chǎn)并銷售某種有機產(chǎn)品,假設生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機產(chǎn)品每千克的銷售價y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關系.

(1)求該產(chǎn)品銷售價y1(元)與產(chǎn)量x(kg)之間的函數(shù)關系式;

(2)直接寫出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關系式;

(3)當產(chǎn)量為多少時,這種產(chǎn)品獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(提出問題)如圖1,小東將一張AD12,寬AB4的長方形紙片按如下方式進行折疊:在紙片的一邊BC上分別取點PQ,使得BP=CQ,連結AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結MN.小東發(fā)現(xiàn)線段MN的位置和長度隨著點P、Q的位置發(fā)生改變.

(規(guī)律探索)

1)請在圖1中過點M,N分別畫ME⊥BC于點E,NF⊥BC于點F

求證:①ME=NF;②MN∥BC

(解決問題)

2)如圖1,若BP=3,求線段MN的長;

3)如圖2,當點P與點Q重合時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開闊學生的視野,積極組織學生參加課外讀書活動.放飛夢想讀書小組協(xié)助老師隨機抽取本校的部分學生,調(diào)查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖,請你結合圖中的信息解答下列問題:

1)求被調(diào)查的學生人數(shù);

2)補全條形統(tǒng)計圖;

3)已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,,過點作直線,將繞點順時針旋轉得到(點,的對應點分別為),射線分別交直線于點,

1)如圖1,當重合時,求的度數(shù);

2)如圖2,設的交點為,當的中點時,求線段的長;

3)在旋轉過程中,當點,分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案