【題目】在現(xiàn)今“互聯(lián)網(wǎng)+”的時(shí)代,密碼與我們的生活已經(jīng)緊密相連,密不可分.而諸如“”、生日等簡單密碼又容易被破解,因此利用簡單方法產(chǎn)生一組容易記憶的密碼就很有必要了.有一種用“因式分解”法產(chǎn)生的密碼,方便記憶,其原理是:將一個(gè)多項(xiàng)式分解因式,如將多項(xiàng)式因式分解的結(jié)果為,當(dāng)時(shí),,,,此時(shí)可以得到數(shù)字密碼或等.
(1)根據(jù)上述方法,當(dāng),時(shí),對(duì)于多項(xiàng)式分解因式后可以形成哪些數(shù)字密碼(寫出四個(gè)即可)?
(2)將多項(xiàng)式因式分解成三個(gè)一次式的乘積后,利用題目中所示的方法,當(dāng)時(shí)可以得到密碼,求,的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),連接AD,點(diǎn)C關(guān)于直線AD的對(duì)稱點(diǎn)為點(diǎn)E,射線BE與射線AD交于點(diǎn)F.
(1)在圖1中,依題意補(bǔ)全圖形;
(2)記(),求的大;(用含的式子表示)
(3)若△ACE是等邊三角形,猜想EF和BC的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( 。
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,,分別是,的中點(diǎn),且.是上一動(dòng)點(diǎn),則的最小值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,且.
(1)_________(用含的代數(shù)式表示).
(2)如圖,當(dāng)點(diǎn)從點(diǎn)開始運(yùn)動(dòng)的同時(shí),點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),是否存在這樣的值,使得以、、為頂點(diǎn)的三角形與以、、為頂點(diǎn)的三角形全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形ABCD中,∠C=∠D=90°,AD<BC,BC=CD=6,E是邊CD上的一點(diǎn),恰好使AE=5,并且∠ABE=45°,則CE的長是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面立角坐標(biāo)系中,直線與軸,軸分別交于點(diǎn)、點(diǎn),點(diǎn)在軸的負(fù)半軸上,若將沿直線折疊,點(diǎn)恰好落在軸正半軸上的點(diǎn)處.
(1)直接寫出的長_________;
(2)求直線的函數(shù)表達(dá)式;
(3)求點(diǎn)和點(diǎn)的坐標(biāo);
(4)軸上是否存在一點(diǎn),使得?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黑白雙雄,縱橫江湖;雙劍合璧,天下無敵,這是武俠小說中的常見描述,其意思是指兩個(gè)人合在一起,取長補(bǔ)短,威力無比,在二次根式中也常有這種相輔相成的“對(duì)子”,如:,它們的積中不含根號(hào),我們說這兩個(gè)二次根式互為有理化因式,其中一個(gè)是另一個(gè)的有理化因式,于是,二次根式除法可以這樣解:
.
像這樣通過分子、分母同乘一個(gè)式子把分母中的根號(hào)化去的方法,叫做分母有理化。
解決問題:
(1)的有理化因式是 ;
將分母有理化得 ;
(2)已知:,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com