【題目】20028月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖所示).如果大正方形的面積是13,小正方形的面積是1,直角三角形的較短直角邊為a,較長直角邊為b,那么(a+b)2的值為_____

【答案】25

【解析】

根據(jù)大正方形的面積即可求得c2利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面積即可求得ab的值,根據(jù)(a+b2=a2+b2+2ab=c2+2ab即可求解.

∵大正方形的面積是13c2=13,a2+b2=c2=13,

∵直角三角形的面積是=3

又∵直角三角形的面積是ab=3,ab=6,a+b2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25

故答案為:25

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AN=BM,BN,MC相交于O,CH⊥BN于點H,求證:2OH=OC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,池塘邊有一塊長為18m,寬為10m的長方形土地,現(xiàn)在將其 余三面留出寬都是xm的小路,中間余下的長方形部分做菜地,用整式表示:

(1)菜地的長a m,寬b m;

(2)菜地面積S m2;

(3)x0.5m時,菜地面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BPEF于點Q,對于下列結(jié)論:①EF=2BE;PF=2PE;FQ=3EQ;④△PBF是等邊三角形,其中正確的是( 。

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD(AD>AB)折疊,使點C剛好落在線段AD上,且折痕分別與邊BC,AD相交,設(shè)折疊后點C,D的對應(yīng)點分別為點G,H,折痕分別與邊BC,AD相交于點E,F(xiàn).

(1)判斷四邊形CEGF的形狀,并證明你的結(jié)論;
(2)若AB=3,BC=9,求線段CE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點EEF∥AB,交BC于點F

1)求證:四邊形DBFE是平行四邊形;

2)當△ABC滿足什么條件時,四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABFADE,連接EBFD,交點為G

(1)當四邊形ABCD為正方形時(如圖1),EBFD的數(shù)量關(guān)系是   ;

(2)當四邊形ABCD為矩形時(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請說明理由;如果不變,請在圖3中求出∠EGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=﹣1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正確的結(jié)論的個數(shù)是( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案