【題目】(問(wèn)題提出)

學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情形進(jìn)行研究.

(初步思考)

我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角三種情況進(jìn)行探究.

(深入探究)

第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF

1)如圖,在△ABC△DEF,AC=DF,BC=EF∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF

2)如圖,在△ABC△DEF,AC=DFBC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF

第三種情況:當(dāng)∠B是銳角時(shí),△ABC△DEF不一定全等.

3)在△ABC△DEFAC=DF,BC=EF∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖中作出△DEF,使△DEF△ABC不全等.(不寫作法,保留作圖痕跡)

4∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫出結(jié)論:在△ABC△DEF中,AC=DFBC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF

【答案】1HL;(2)證明見解析;(3)作圖見解析;(4∠B≥∠A

【解析】

1)解:HL;

2)證明:如圖,過(guò)點(diǎn)CCG⊥ABAB的延長(zhǎng)線于G,過(guò)點(diǎn)FFH⊥DEDE的延長(zhǎng)線于H,

∵∠B=∠E,且∠B、∠E都是鈍角,

∴180°-∠B=180°-∠E,

∠CBG=∠FEH,

△CBG△FEH中,

∴△CBG≌△FEHAAS),

∴CG=FH,

Rt△ACGRt△DFH中,

AC=DF,CG=FH

∴Rt△ACG≌Rt△DFHHL),

∴∠A=∠D,

△ABC△DEF中,

∴△ABC≌△DEFAAS);

3)解:如圖,△DEF△ABC不全等;

4)解:若∠B≥∠A,則△ABC≌△DEF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家商店準(zhǔn)備進(jìn)行裝修,若請(qǐng)甲、乙兩個(gè)裝修隊(duì)同時(shí)施工,8天完成,需付兩隊(duì)共3520元費(fèi)用;若先請(qǐng)甲隊(duì)單獨(dú)做6天,再請(qǐng)乙隊(duì)單獨(dú)做12天可以完成,需付兩隊(duì)共3480元費(fèi)用。

(1)甲、乙兩隊(duì)工作一天,商場(chǎng)各應(yīng)付多少元?

(2)單獨(dú)請(qǐng)哪個(gè)隊(duì)裝修,商場(chǎng)所付費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E、F是正方形ABCD的對(duì)角線AC上的兩點(diǎn),AC8,AECF1,則四邊形BEDF的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°AD平分∠BAC,DEABE,下列結(jié)論:①CD=ED;②AC+BE=AB;③∠BDE=BAC;④BE=DE;⑤SBDESACD=BDAC,其中正確的個(gè)數(shù)(

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長(zhǎng)線段BP、QC交于點(diǎn)E△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)關(guān)于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長(zhǎng)和底邊上的高成反比例;

(2)面積一定的菱形的兩條對(duì)角線長(zhǎng)成反比例;

(3)面積一定的矩形的兩條對(duì)角線長(zhǎng)成反比例;

(4)面積一定的直角三角形的兩直角邊長(zhǎng)成比例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)關(guān)于是否成反比例的命題,判斷它們的真假.

(1)面積一定的等腰三角形的底邊長(zhǎng)和底邊上的高成反比例;

(2)面積一定的菱形的兩條對(duì)角線長(zhǎng)成反比例;

(3)面積一定的矩形的兩條對(duì)角線長(zhǎng)成反比例;

(4)面積一定的直角三角形的兩直角邊長(zhǎng)成比例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果商從批發(fā)市場(chǎng)用8000元購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,大櫻桃的進(jìn)價(jià)比小櫻桃的進(jìn)價(jià)每千克多20元.大櫻桃售價(jià)為每千克40元,小櫻桃售價(jià)為每千克16元.

(1)大櫻桃和小櫻桃的進(jìn)價(jià)分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場(chǎng)購(gòu)進(jìn)了大櫻桃和小櫻桃各200千克,進(jìn)價(jià)不變,但在運(yùn)輸過(guò)程中小櫻桃損耗了20%.若小櫻桃的售價(jià)不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價(jià)最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P給出如下定義記點(diǎn)Px軸的距離為,y軸的距離為,則稱為點(diǎn)P的最大距離;,則稱為點(diǎn)P的最大距離

例如點(diǎn)P 到到x軸的距離為4,y軸的距離為3,因?yàn)?/span>34,所以點(diǎn)P的最大距離為.

1①點(diǎn)A2, 的最大距離為________;

②若點(diǎn)B, 的最大距離為,的值為________;

2若點(diǎn)C在直線,且點(diǎn)C的最大距離為,求點(diǎn)C的坐標(biāo)

3若⊙O存在點(diǎn)M,使點(diǎn)M的最大距離為,直接寫出⊙O的半徑r的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案