【題目】解下列方程:
(1) ﹣ =1
(2) ﹣ =1.
【答案】
(1)解:兩邊都乘以(x﹣2),得
2x+2=x﹣2
移項,得
2x﹣x=﹣2﹣2
合并同類項,得x=﹣4
經檢驗:x=﹣4是原方程的解
(2)解:兩邊都乘以(x+1)(x﹣1),得
(x+1)2﹣4=(x+1)(x﹣1)
去括號,移項,得
2x﹣4x=﹣1﹣1+4
系數化為1,得
x=1,
經檢驗:x=1是增根,
原方程無解.
【解析】(1)根據等式的性質,可得整式方程,根據解整式方程,可得答案;(2)根據等式的性質,可得整式方程,根據解整式方程,可得答案.
【考點精析】解答此題的關鍵在于理解去分母法的相關知識,掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊.
科目:初中數學 來源: 題型:
【題目】按要求作圖
(1)已知△ABC中,∠A=90°,∠B=67.5°,請畫一條直線,把這個三角形分割成兩個等腰三角形.(請你選用下面給出的備用圖,把所有不同的分割方法都畫出來.只需畫圖,不必說明理由,但要在圖中標出相等兩角的度數)
(2)已知△ABC中,∠C是其最小的內角,過頂點B的一條直線把這個三角形分割成了兩個等腰三角形,請?zhí)角蟆螦BC與∠C之間的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關系,并證明你的結論.
解:∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補角定義)
∴∠2=________.(________.),
∴AB∥EF(________.)
∴∠3=________.(________.)
又∠B=∠3(已知)
∴∠B=________.(等量代換)
∴DE∥BC(________.)
∴∠C=∠AED(________.).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖,
請回答下列問題:
(1)這次被調查的學生共有多少人?
(2)請你將條形統計圖(2)補充完整;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現優(yōu)秀,現決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調查,利用所得數據繪成如圖統計圖表:
頻數分布表
身高分組 | 頻數 | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a= , b=;
(2)補全頻數分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com