【題目】在某段限速公路BC上(公路視為直線),交通管理部門規(guī)定汽車的最高行駛速度不能超過60 km/h,并在離該公路100 m處設置了一個監(jiān)測點A.在如圖的平面直角坐標系中,點A位于y軸上,測速路段BC在x軸上,點B在點A的北偏西60°方向上,點C在點A的北偏東45°方向上.另外一條公路在y軸上,AO為其中的一段.

(1)求點B和點C的坐標;

(2)一輛汽車從點B勻速行駛到點C所用的時間是15 s,通過計算,判斷該汽車在這段限速路上是否超速.(參考數(shù)據(jù): ≈1.7)

【答案】見解析

【解析】試題分析:根據(jù)方位角的概念,得出BAO=60°,∠CAO=45°,BAO=60°可得ABO=30°,進而可得AB的值,然后在Rt△ABO中由勾股定理可求出OB的值,(2)判斷是否超速就是求BC的長,然后比較即可.

解:(1)在Rt△AOB中,

∵∠BAO60°∴∠ABO30°,OAAB.

∵OA100 m,∴AB200 m.

由勾股定理,得OB=100 (m)

Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.

OCOA100 mB(100,0),C(100,0)

(2)BCBOCO(100100)m, ≈18>,

∴這輛汽車超速了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)點M是弧AB的中點,CMAB于點N,若AB=4,求MN·MC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)如圖,自來水廠A和村莊B在小河l的兩側,現(xiàn)要在A,B間鋪設一知輸水管道.為了搞好工程預算,需測算出A,B間的距離.一小船在點P處測得A在正北方向,B位于南偏東24.5°方向,前行1200m,到達點Q處,測得A位于北偏東49°方向,B位于南偏西41°方向.

1)線段BQPQ是否相等?請說明理由;

2)求AB間的距離.(參考數(shù)據(jù)cos41°0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤.通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤.為保證每天至少售出260斤,張阿姨決定降價銷售.

銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖A、B、CD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點AC同時出發(fā),P3cm/s的速度向點B移動,一直到達B為止,Q2 cm/s的速度向D移動

(1)PQ兩點從出發(fā)開始到幾秒?四邊形PBCQ的面積為33cm2

(2)P、Q兩點從出發(fā)開始到幾秒時?點P和點Q的距離是10cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過點B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.

(1)求拋物線的解析式,并根據(jù)圖象直接寫出當y≤0時,自變量x的取值范圖;

(2)在第二象限內(nèi)的拋物線上有一點P,當PABA時,求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個口袋有個黑球和若干個白球,在不允許將球倒出來的前提下,小明為估計其中的白球數(shù),采用了如下的方法:從口袋中隨機摸出一球,記下顏色,然后把它放回口袋中,搖勻后再隨機摸出一球,記下顏色,再放回口袋中,,不斷重復上述過程,小明共摸了次,其中次摸到黑球.根據(jù)上述數(shù)據(jù),小明正估計口袋中的白球的個數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王涵想知道一堵墻上點的高度,即的長度,但點的位置較高,沒有梯子之類的工具,于是設計了下面的方案,請你先補全方案,再說明理由.

1)補全方案.

第一步:如圖,找一根長度大于的直桿,使直桿靠在墻上,且頂端與點重合,記下直桿與地面的夾角

第二步:使直桿頂端豎直緩慢下滑,直到____________________,標記此時直桿的底端點;

第三步:測量__________的長度,即為點的高度;

2)說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為2的等邊三角形,將ABC沿射線BC向右平移到DCE,連接AD,BD,下列結論錯誤的是(  )

A.AD=BCB.BDDE

C.四邊形ACED是菱形D.四邊形ABCD的面積為4

查看答案和解析>>

同步練習冊答案