【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

【答案】A
【解析】解:此題在讀懂題意的基礎(chǔ)上,分兩種情況討論:
當(dāng)x≤4時(shí),y=6×8﹣(x2x)=﹣2x2+48,此時(shí)函數(shù)的圖象為拋物線的一部分,它的最上點(diǎn)拋物線的頂點(diǎn)(0,48),最下點(diǎn)為(4,16);
當(dāng)4<x≤6時(shí),點(diǎn)E停留在B點(diǎn)處,故y=48﹣8x=﹣8x+48,此時(shí)函數(shù)的圖象為直線y=﹣8x+48的一部分,它的最上點(diǎn)可以為(4,16),它的最下點(diǎn)為(6,0).
結(jié)合四個(gè)選項(xiàng)的圖象知選A項(xiàng).
故選:A.
重點(diǎn)考查學(xué)生的閱讀理解能力、分析研究能力.在解答時(shí)要注意先總結(jié)出函數(shù)的解析式,由解析式結(jié)合其取值范圍判斷,不要只靠感覺.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個(gè)單位到△DEF的位置.

(1)BC邊上的高;

(2)AB=10,

①求線段DF的長(zhǎng);

②連結(jié)AE,當(dāng)△ABE時(shí)等腰三角形時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,∠ABC的平分線交AD于點(diǎn)E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長(zhǎng)為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將含45°角的三角板的直角頂點(diǎn)R放在直線l上,分別過兩銳角的頂點(diǎn)M,N作l的垂線,垂足分別為P、Q,
(1)如圖1,觀察圖1可知:與NQ相等的線段是 , 與∠NPQ相等的角是

(2)直角△ABC中,∠B=90°,在AB邊上任取一點(diǎn)D,連接CD,分別以AC,DC為邊作正方形ACEF和正方形CDGH,如圖2,過E,H分別作BC所在直線的垂線,垂足分別為K,L.試探究EK與HL之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(3)直角△ABC中,∠B=90°,在AB邊上任取一點(diǎn)D,連接CD,分別以AC,DC為邊作矩形ACEF和矩形CDGH,連接EH交BC所在的直線于點(diǎn)T,如圖3,如果AC=kCE,CD=kCH,試探究TE與TH之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為A(-4,5),C(-1,3).

(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格內(nèi)作出x軸、y軸;

(2)請(qǐng)作出ABC關(guān)于y軸對(duì)稱的A1B1C1;

(3)寫出點(diǎn)B1的坐標(biāo)并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的長(zhǎng)度構(gòu)造一組正方形(如下圖),再分別依次從左到右取2個(gè),3個(gè),4個(gè),5個(gè)正方形拼成如下長(zhǎng)方形并記為①,②,③,④,相應(yīng)長(zhǎng)方形的周長(zhǎng)如下表所示:

若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為⑧的長(zhǎng)方形周長(zhǎng)是( )

A. 288 B. 178 C. 28 D. 110

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:①∠EBG=45°;②AG+DF=FG;③△DEF∽△ABG;④SABG= SFGH . 其中正確的是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是矩形ABCD的對(duì)角線,過AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案