【題目】如圖,在第一象限內(nèi)作射線OC,與x軸的夾角為30°,在射線OC上取點(diǎn)A,過點(diǎn)A作AH⊥x軸于點(diǎn)H.在拋物線y=x2(x>0)上取點(diǎn)P,在y軸上取點(diǎn)Q,使得以P、O、Q為頂點(diǎn),且以點(diǎn)Q為直角頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是__________.
【答案】(,),(3,),(,2),(,)
【解析】
此題應(yīng)分四種情況考慮:
①∠POQ=∠OAH=60°,此時(shí)A、P重合,可聯(lián)立直線OA和拋物線的解析式,即可得A點(diǎn)坐標(biāo);
②∠POQ=∠AOH=30°,此時(shí)∠POH=60°,即直線OP:y=x,聯(lián)立拋物線的解析式可得P點(diǎn)坐標(biāo),進(jìn)而可求出OQ、PQ的長,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到點(diǎn)A的坐標(biāo).
③當(dāng)∠OPQ=90°,∠POQ=∠AOH=30°時(shí),此時(shí)△QOP≌△AOH,由此求得點(diǎn)A的坐標(biāo);
④當(dāng)∠OPQ=90°,∠POQ=∠OAH=60°,此時(shí)△OQP≌△AOH,由此求得點(diǎn)A的坐標(biāo);
①當(dāng)∠POQ=∠OAH=60°,若以P,O,Q為頂點(diǎn)的三角形與△AOH全等,那么A、P重合;
由于∠AOH=30°,設(shè)A坐標(biāo)為(a,b),
在直角三角形OAH中,tan∠AOH=tan30°== ,
設(shè)直線OA的方程為y=kx,把A的坐標(biāo)代入得k==,
∴直線OA的解析式: y=x,聯(lián)立拋物線的解析式,
得:,
解得 , ;
∴A(,);
②當(dāng)∠POQ=∠AOH=30°,此時(shí)△POQ≌△AOH;
易知∠POH=60°,則直線OP:y= x,聯(lián)立拋物線的解析式,得: ,
解得,;
∴P(,3),即可得A(3,);
③當(dāng)∠OPQ=90°,∠POQ=∠AOH=30°時(shí),此時(shí)△QOP≌△AOH;
易知∠POH=60°,則直線OP:y=x,聯(lián)立拋物線的解析式,得:,
解得 ,;
∴P(,3),
∴OP=2,QP=2,
∴OH=OP=2,AH=QP=2,
∴A(2,2);
④當(dāng)∠OPQ=90°,∠POQ=∠OAH=60°,此時(shí)△OQP≌△AOH;
此時(shí)直線OP:y=x,聯(lián)立拋物線的解析式,得:,
解得 , ;
∴P(, ),
∴QP=,OP=,
∴OH=QP=,AH=OP=,
∴A(,).
綜上可知:符合條件的點(diǎn)A有四個(gè),且坐標(biāo)為:(,),(3,),(,2),(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠BAD是△ABC的一個(gè)外角,∠BAC、∠BAD的平分線分別交⊙O于點(diǎn)E、F.請你在圖上連接EF.(1)證明:EF是⊙O的直徑;(2)請你判斷EF與BC有怎樣的位置關(guān)系?并請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果二次函數(shù)y=x2+(k+2)x+k+5的圖象與x軸的兩個(gè)不同交點(diǎn)的橫坐標(biāo)都是正的,那么k值應(yīng)為( )
A. k>4或k<﹣5 B. ﹣5<k<﹣4 C. k≥﹣4或k≤﹣5 D. ﹣5≤k≤﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=900,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證: ≌△CBE;②DE=AD+BE;
當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為12cm的正方形中,是邊的中點(diǎn),點(diǎn)從點(diǎn)出發(fā),在正方形邊上沿的方向以大于1 cm/s的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā),在邊上沿方向以1 cm/s的速度勻速移動(dòng),、兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)、相遇時(shí)即停止移動(dòng).設(shè)點(diǎn)移動(dòng)的時(shí)間為t(s),正方形與的內(nèi)部重疊部分面積為(cm2).已知點(diǎn)移動(dòng)到點(diǎn)處,的值為96(即此時(shí)正方形與的內(nèi)部重疊部分面積為96cm2).
(1)求點(diǎn)的速度:
(2)求與t的函數(shù)關(guān)系式,并直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O的直徑AB的長為10,弦AC的長為5,∠ACB的平分線交O于點(diǎn)D.
(1)求∠ADC的度數(shù);
(2)求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為,其圖象與軸的交點(diǎn)、的橫坐標(biāo)分別為,.與軸負(fù)半軸交于點(diǎn),在下面五個(gè)結(jié)論中:
①;②;③;④只有當(dāng)時(shí),是等腰直角三角形;⑤使為等腰三角形的值可以有四個(gè).
其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com